nevreal commited on
Commit
ad68adf
·
verified ·
1 Parent(s): f11de22

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +434 -0
app.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import os
3
+ import gradio as gr
4
+ from huggingface_hub import update_repo_visibility, whoami, upload_folder, create_repo, upload_file, update_repo_visibility
5
+ from slugify import slugify
6
+ import gradio as gr
7
+ import re
8
+ import uuid
9
+ from typing import Optional
10
+ import json
11
+ from bs4 import BeautifulSoup
12
+
13
+ TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "multimodalart", "Norod78", "joachimsallstrom", "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr", "nevreal"]
14
+
15
+ def get_json_data(url):
16
+ url_split = url.split('/')
17
+ api_url = f"https://civitai.com/api/v1/models/{url_split[4]}"
18
+ try:
19
+ response = requests.get(api_url)
20
+ response.raise_for_status()
21
+ return response.json()
22
+ except requests.exceptions.RequestException as e:
23
+ print(f"Error fetching JSON data: {e}")
24
+ return None
25
+
26
+ def check_nsfw(json_data, profile):
27
+ if json_data["nsfw"]:
28
+ return False
29
+ print(profile)
30
+ if(profile.username in TRUSTED_UPLOADERS):
31
+ return True
32
+ for model_version in json_data["modelVersions"]:
33
+ for image in model_version["images"]:
34
+ if image["nsfwLevel"] > 5:
35
+ return False
36
+ return True
37
+
38
+ def get_prompts_from_image(image_id):
39
+ url = f'https://civitai.com/api/trpc/image.getGenerationData?input={{"json":{{"id":{image_id}}}}}'
40
+ response = requests.get(url)
41
+ prompt = ""
42
+ negative_prompt = ""
43
+ if response.status_code == 200:
44
+ data = response.json()
45
+ result = data['result']['data']['json']
46
+ if "prompt" in result['meta']:
47
+ prompt = result['meta']['prompt']
48
+ if "negativePrompt" in result['meta']:
49
+ negative_prompt = result["meta"]["negativePrompt"]
50
+
51
+ return prompt, negative_prompt
52
+
53
+ def extract_info(json_data):
54
+ if json_data["type"] == "LORA":
55
+ for model_version in json_data["modelVersions"]:
56
+ if model_version["baseModel"] in ["SDXL 1.0", "SDXL 0.9", "SD 1.5", "SD 1.4", "SD 2.1", "SD 2.0", "SD 2.0 768", "SD 2.1 768", "SD 3", "Flux.1 D", "Flux.1 S"]:
57
+ for file in model_version["files"]:
58
+ print(file)
59
+ if "primary" in file:
60
+ # Start by adding the primary file to the list
61
+ urls_to_download = [{"url": file["downloadUrl"], "filename": file["name"], "type": "weightName"}]
62
+
63
+ # Then append all image URLs to the list
64
+ for image in model_version["images"]:
65
+ image_id = image["url"].split("/")[-1].split(".")[0]
66
+ prompt, negative_prompt = get_prompts_from_image(image_id)
67
+ urls_to_download.append({
68
+ "url": image["url"],
69
+ "filename": os.path.basename(image["url"]),
70
+ "type": "imageName",
71
+ "prompt": prompt, #if "meta" in image and "prompt" in image["meta"] else ""
72
+ "negative_prompt": negative_prompt
73
+ })
74
+ model_mapping = {
75
+ "SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
76
+ "SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0",
77
+ "SD 1.5": "runwayml/stable-diffusion-v1-5",
78
+ "SD 1.4": "CompVis/stable-diffusion-v1-4",
79
+ "SD 2.1": "stabilityai/stable-diffusion-2-1-base",
80
+ "SD 2.0": "stabilityai/stable-diffusion-2-base",
81
+ "SD 2.1 768": "stabilityai/stable-diffusion-2-1",
82
+ "SD 2.0 768": "stabilityai/stable-diffusion-2",
83
+ "SD 3": "stabilityai/stable-diffusion-3-medium-diffusers",
84
+ "Flux.1 D": "black-forest-labs/FLUX.1-dev",
85
+ "Flux.1 S": "black-forest-labs/FLUX.1-schnell"
86
+ }
87
+ base_model = model_mapping[model_version["baseModel"]]
88
+ info = {
89
+ "urls_to_download": urls_to_download,
90
+ "id": model_version["id"],
91
+ "baseModel": base_model,
92
+ "modelId": model_version.get("modelId", ""),
93
+ "name": json_data["name"],
94
+ "description": json_data["description"],
95
+ "trainedWords": model_version["trainedWords"] if "trainedWords" in model_version else [],
96
+ "creator": json_data["creator"]["username"],
97
+ "tags": json_data["tags"],
98
+ "allowNoCredit": json_data["allowNoCredit"],
99
+ "allowCommercialUse": json_data["allowCommercialUse"],
100
+ "allowDerivatives": json_data["allowDerivatives"],
101
+ "allowDifferentLicense": json_data["allowDifferentLicense"]
102
+ }
103
+ return info
104
+ return None
105
+
106
+ def download_files(info, folder="."):
107
+ downloaded_files = {
108
+ "imageName": [],
109
+ "imagePrompt": [],
110
+ "imageNegativePrompt": [],
111
+ "weightName": []
112
+ }
113
+ for item in info["urls_to_download"]:
114
+ download_file(item["url"], item["filename"], folder)
115
+ downloaded_files[item["type"]].append(item["filename"])
116
+ if(item["type"] == "imageName"):
117
+ prompt_clean = re.sub(r'<.*?>', '', item["prompt"])
118
+ negative_prompt_clean = re.sub(r'<.*?>', '', item["negative_prompt"])
119
+ downloaded_files["imagePrompt"].append(prompt_clean)
120
+ downloaded_files["imageNegativePrompt"].append(negative_prompt_clean)
121
+ return downloaded_files
122
+
123
+ def download_file(url, filename, folder="."):
124
+ headers = {}
125
+ try:
126
+ response = requests.get(url, headers=headers)
127
+ response.raise_for_status()
128
+ except requests.exceptions.HTTPError as e:
129
+ print(e)
130
+ if response.status_code == 401:
131
+ headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API"]}'
132
+ try:
133
+ response = requests.get(url, headers=headers)
134
+ response.raise_for_status()
135
+ except requests.exceptions.RequestException as e:
136
+ raise gr.Error(f"Error downloading file: {e}")
137
+ else:
138
+ raise gr.Error(f"Error downloading file: {e}")
139
+ except requests.exceptions.RequestException as e:
140
+ raise gr.Error(f"Error downloading file: {e}")
141
+
142
+ with open(f"{folder}/{filename}", 'wb') as f:
143
+ f.write(response.content)
144
+
145
+ def process_url(url, profile, do_download=True, folder="."):
146
+ json_data = get_json_data(url)
147
+ if json_data:
148
+ if check_nsfw(json_data, profile):
149
+ info = extract_info(json_data)
150
+ if info:
151
+ if(do_download):
152
+ downloaded_files = download_files(info, folder)
153
+ else:
154
+ downloaded_files = []
155
+ return info, downloaded_files
156
+ else:
157
+ raise gr.Error("Only SDXL LoRAs are supported for now")
158
+ else:
159
+ raise gr.Error("This model has content tagged as unsafe by CivitAI")
160
+ else:
161
+ raise gr.Error("Something went wrong in fetching CivitAI API")
162
+
163
+ def create_readme(info, downloaded_files, user_repo_id, link_civit=False, is_author=True, folder="."):
164
+ readme_content = ""
165
+ original_url = f"https://civitai.com/models/{info['modelId']}"
166
+ link_civit_disclaimer = f'([CivitAI]({original_url}))'
167
+ non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:'
168
+ default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "migrated"]
169
+ civit_tags = [t.replace(":", "") for t in info["tags"] if t not in default_tags]
170
+ tags = default_tags + civit_tags
171
+ unpacked_tags = "\n- ".join(tags)
172
+
173
+ trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
174
+ formatted_words = ', '.join(f'`{word}`' for word in trained_words)
175
+ if formatted_words:
176
+ trigger_words_section = f"""## Trigger words
177
+ You should use {formatted_words} to trigger the image generation.
178
+ """
179
+ else:
180
+ trigger_words_section = ""
181
+
182
+ widget_content = ""
183
+ for index, (prompt, negative_prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageNegativePrompt"], downloaded_files["imageName"])):
184
+ escaped_prompt = prompt.replace("'", "''")
185
+ negative_prompt_content = f"""parameters:
186
+ negative_prompt: {negative_prompt}
187
+ """ if negative_prompt else ""
188
+ widget_content += f"""- text: '{escaped_prompt if escaped_prompt else ' ' }'
189
+ {negative_prompt_content}
190
+ output:
191
+ url: >-
192
+ {image}
193
+ """
194
+ dtype = "torch.bfloat16" if info["baseModel"] == "black-forest-labs/FLUX.1-dev" or info["baseModel"] == "black-forest-labs/FLUX.1-schnell" else "torch.float16"
195
+
196
+ content = f"""---
197
+ license: other
198
+ license_name: bespoke-lora-trained-license
199
+ license_link: https://multimodal.art/civitai-licenses?allowNoCredit={info["allowNoCredit"]}&allowCommercialUse={info["allowCommercialUse"][0] if info["allowCommercialUse"] else 1}&allowDerivatives={info["allowDerivatives"]}&allowDifferentLicense={info["allowDifferentLicense"]}
200
+ tags:
201
+ - {unpacked_tags}
202
+
203
+ base_model: {info["baseModel"]}
204
+ instance_prompt: {info['trainedWords'][0] if 'trainedWords' in info and len(info['trainedWords']) > 0 else ''}
205
+ widget:
206
+ {widget_content}
207
+ ---
208
+
209
+ # {info["name"]}
210
+
211
+ <Gallery />
212
+
213
+ {non_author_disclaimer if not is_author else ''}
214
+
215
+ {link_civit_disclaimer if link_civit else ''}
216
+
217
+ ## Model description
218
+
219
+ {info["description"]}
220
+
221
+ {trigger_words_section}
222
+
223
+ ## Download model
224
+
225
+ Weights for this model are available in Safetensors format.
226
+
227
+ [Download](/{user_repo_id}/tree/main) them in the Files & versions tab.
228
+
229
+ ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
230
+
231
+ ```py
232
+ from diffusers import AutoPipelineForText2Image
233
+ import torch
234
+
235
+ device = "cuda" if torch.cuda.is_available() else "cpu"
236
+
237
+ pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype={dtype}).to(device)
238
+ pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"][0]}')
239
+ image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
240
+ ```
241
+
242
+ For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
243
+ """
244
+ #for index, (image, prompt) in enumerate(zip(downloaded_files["imageName"], downloaded_files["imagePrompt"])):
245
+ # if index == 1:
246
+ # content += f"## Image examples for the model:\n![Image {index}]({image})\n> {prompt}\n"
247
+ # elif index > 1:
248
+ # content += f"\n![Image {index}]({image})\n> {prompt}\n"
249
+ readme_content += content + "\n"
250
+ with open(f"{folder}/README.md", "w") as file:
251
+ file.write(readme_content)
252
+
253
+ def get_creator(username):
254
+ url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D"
255
+ headers = {
256
+ "authority": "civitai.com",
257
+ "accept": "*/*",
258
+ "accept-language": "en-BR,en;q=0.9,pt-BR;q=0.8,pt;q=0.7,es-ES;q=0.6,es;q=0.5,de-LI;q=0.4,de;q=0.3,en-GB;q=0.2,en-US;q=0.1,sk;q=0.1",
259
+ "content-type": "application/json",
260
+ "cookie": f'{os.environ["COOKIE_INFO"]}',
261
+ "if-modified-since": "Tue, 22 Aug 2023 07:18:52 GMT",
262
+ "referer": f"https://civitai.com/user/{username}/models",
263
+ "sec-ch-ua": "\"Not.A/Brand\";v=\"8\", \"Chromium\";v=\"114\", \"Google Chrome\";v=\"114\"",
264
+ "sec-ch-ua-mobile": "?0",
265
+ "sec-ch-ua-platform": "macOS",
266
+ "sec-fetch-dest": "empty",
267
+ "sec-fetch-mode": "cors",
268
+ "sec-fetch-site": "same-origin",
269
+ "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
270
+ }
271
+ response = requests.get(url, headers=headers)
272
+
273
+ return response.json()
274
+
275
+ def extract_huggingface_username(username):
276
+ data = get_creator(username)
277
+ links = data.get('result', {}).get('data', {}).get('json', {}).get('links', [])
278
+ for link in links:
279
+ url = link.get('url', '')
280
+ if url.startswith('https://huggingface.co/') or url.startswith('https://www.huggingface.co/'):
281
+ username = url.split('/')[-1]
282
+ return username
283
+
284
+ return None
285
+
286
+
287
+ def check_civit_link(profile: Optional[gr.OAuthProfile], url):
288
+ info, _ = process_url(url, profile, do_download=False)
289
+ hf_username = extract_huggingface_username(info['creator'])
290
+ attributes_methods = dir(profile)
291
+
292
+ if(profile.username == "multimodalart"):
293
+ return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True)
294
+
295
+ if(not hf_username):
296
+ no_username_text = f'If you are {info["creator"]} on CivitAI, hi! Your CivitAI profile seems to not have information about your Hugging Face account. Please visit <a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a> and include your 🤗 username there, here\'s mine:<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" /><br>(if you are not {info["creator"]}, you cannot submit their model at this time)'
297
+ return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
298
+ if(profile.username != hf_username):
299
+ unmatched_username_text = '<h4>Oops, the Hugging Face account in your CivitAI profile seems to be different than the one your are using here. Please visit <a href="https://civitai.com/user/account">https://civitai.com/user/account</a> and update it there to match your Hugging Face account<br><img src="https://i.imgur.com/hCbo9uL.png" /></h4>'
300
+ return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
301
+ else:
302
+ return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True)
303
+
304
+ def swap_fill(profile: Optional[gr.OAuthProfile]):
305
+ if profile is None:
306
+ return gr.update(visible=True), gr.update(visible=False)
307
+ else:
308
+ return gr.update(visible=False), gr.update(visible=True)
309
+
310
+ def show_output():
311
+ return gr.update(visible=True)
312
+
313
+ def list_civit_models(username):
314
+ url = f"https://civitai.com/api/v1/models?username={username}&limit=100"
315
+ json_models_list = []
316
+
317
+ while url:
318
+ response = requests.get(url)
319
+ data = response.json()
320
+
321
+ # Add current page items to the list
322
+ json_models_list.extend(data.get('items', []))
323
+
324
+ # Check if there is a nextPage URL in the metadata
325
+ metadata = data.get('metadata', {})
326
+ url = metadata.get('nextPage', None)
327
+ urls = ""
328
+ for model in json_models_list:
329
+ urls += f'https://civitai.com/models/{model["id"]}/{slugify(model["name"])}\n'
330
+
331
+ return urls
332
+
333
+ def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token: gr.OAuthToken, url, link_civit=False):
334
+ if not profile.name:
335
+ return gr.Error("Are you sure you are logged in?")
336
+
337
+ folder = str(uuid.uuid4())
338
+ os.makedirs(folder, exist_ok=False)
339
+ gr.Info(f"Starting download of model {url}")
340
+ info, downloaded_files = process_url(url, profile, folder=folder)
341
+ username = {profile.username}
342
+ slug_name = slugify(info["name"])
343
+ user_repo_id = f"{profile.username}/{slug_name}"
344
+ create_readme(info, downloaded_files, user_repo_id, link_civit, folder=folder)
345
+ try:
346
+ create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=oauth_token.token)
347
+ gr.Info(f"Starting to upload repo {user_repo_id} to Hugging Face...")
348
+ upload_folder(
349
+ folder_path=folder,
350
+ repo_id=user_repo_id,
351
+ repo_type="model",
352
+ token=oauth_token.token
353
+ )
354
+ update_repo_visibility(repo_id=user_repo_id, private=False, token=oauth_token.token)
355
+ gr.Info(f"Model uploaded!")
356
+ except Exception as e:
357
+ print(e)
358
+ raise gr.Error("Your Hugging Face Token expired. Log out and in again to upload your models.")
359
+
360
+ return f'''# Model uploaded to 🤗!
361
+ ## Access it here [{user_repo_id}](https://huggingface.co/{user_repo_id}) '''
362
+
363
+ def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token: gr.OAuthToken, urls, link_civit=False):
364
+ urls = urls.split("\n")
365
+ print(urls)
366
+ upload_results = ""
367
+ for url in urls:
368
+ if(url):
369
+ try:
370
+ upload_result = upload_civit_to_hf(profile, oauth_token, url, link_civit)
371
+ upload_results += upload_result+"\n"
372
+ except Exception as e:
373
+ gr.Warning(f"Error uploading the model {url}")
374
+ return upload_results
375
+
376
+ css = '''
377
+ #login {
378
+ width: 100% !important;
379
+ margin: 0 auto;
380
+ }
381
+ #disabled_upload{
382
+ opacity: 0.5;
383
+ pointer-events:none;
384
+ }
385
+ '''
386
+
387
+ with gr.Blocks(css=css) as demo:
388
+ gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face 🤗
389
+ By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget, you'll be listed in [LoRA Studio](https://lorastudio.co/models) after a short review, and get the possibility to submit your model to the [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) ✨
390
+ ''')
391
+ gr.LoginButton(elem_id="login")
392
+ with gr.Column(elem_id="disabled_upload") as disabled_area:
393
+ with gr.Row():
394
+ submit_source_civit = gr.Textbox(
395
+ placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl",
396
+ label="CivitAI model URL",
397
+ info="URL of the CivitAI LoRA",
398
+ )
399
+ submit_button_civit = gr.Button("Upload model to Hugging Face and submit", interactive=False)
400
+ with gr.Column(visible=False) as enabled_area:
401
+ with gr.Column():
402
+ submit_source_civit = gr.Textbox(
403
+ placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl",
404
+ label="CivitAI model URL",
405
+ info="URL of the CivitAI LoRA",
406
+
407
+ )
408
+ with gr.Accordion("Bulk upload (bring in multiple LoRAs)", open=False):
409
+ civit_username_to_bulk = gr.Textbox(label="CivitAI username (optional)", info="Type your CivitAI username here to automagically fill the bulk models URLs list below (optional, you can paste links down here directly)")
410
+ submit_bulk_civit = gr.Textbox(
411
+ label="CivitAI bulk models URLs",
412
+ info="Add one URL per line",
413
+ lines=6,
414
+ )
415
+ link_civit = gr.Checkbox(label="Link back to CivitAI?", value=False)
416
+ bulk_button = gr.Button("Bulk upload")
417
+
418
+ instructions = gr.HTML("")
419
+ try_again_button = gr.Button("I have added my HF profile to my account (it may take 1 minute to refresh)", visible=False)
420
+ submit_button_civit = gr.Button("Upload model to Hugging Face", interactive=False)
421
+ output = gr.Markdown(label="Output progress", visible=False)
422
+
423
+ demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area], queue=False)
424
+
425
+ submit_source_civit.change(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit])
426
+ civit_username_to_bulk.change(fn=list_civit_models, inputs=[civit_username_to_bulk], outputs=[submit_bulk_civit])
427
+ try_again_button.click(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit])
428
+
429
+ submit_button_civit.click(fn=show_output, inputs=[], outputs=[output]).then(fn=upload_civit_to_hf, inputs=[submit_source_civit, link_civit], outputs=[output])
430
+ bulk_button.click(fn=show_output, inputs=[], outputs=[output]).then(fn=bulk_upload, inputs=[submit_bulk_civit, link_civit], outputs=[output])
431
+ #gr.LogoutButton(elem_id="logout")
432
+
433
+ demo.queue(default_concurrency_limit=50)
434
+ demo.launch()