File size: 9,683 Bytes
780f01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import glob
import json
import traceback
import logging
import gradio as gr
import numpy as np
import librosa
import torch
import asyncio
import edge_tts
import yt_dlp
import ffmpeg
import subprocess
import sys
import io
import wave
from datetime import datetime
from fairseq import checkpoint_utils
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from vc_infer_pipeline import VC
from config import Config
config = Config()
logging.getLogger("numba").setLevel(logging.WARNING)
limitation = os.getenv("SYSTEM") == "spaces"

audio_mode = []
f0method_mode = []
f0method_info = ""
if limitation is True:
    audio_mode = ["Upload audio", "TTS Audio"]
    f0method_mode = ["pm", "crepe", "harvest"]
    f0method_info = "PM is fast, rmvpe is middle, Crepe or harvest is good but it was extremely slow (Default: PM)"
else:
    audio_mode = ["Upload audio", "Youtube", "TTS Audio"]
    f0method_mode = ["pm", "crepe", "harvest"]
    f0method_info = "PM is fast, rmvpe is middle. Crepe or harvest is good but it was extremely slow (Default: PM))"

if os.path.isfile("rmvpe.pt"):
    f0method_mode.insert(2, "rmvpe")

def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
    def vc_fn(
        vc_audio_mode,
        vc_input, 
        vc_upload,
        tts_text,
        tts_voice,
        f0_up_key,
        f0_method,
        index_rate,
        filter_radius,
        resample_sr,
        rms_mix_rate,
        protect,
    ):
        try:
            if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
                audio, sr = librosa.load(vc_input, sr=16000, mono=True)
            elif vc_audio_mode == "Upload audio":
                if vc_upload is None:
                    return "You need to upload an audio", None
                sampling_rate, audio = vc_upload
                duration = audio.shape[0] / sampling_rate
                if duration > 360 and limitation:
                    return "Please upload an audio file that is less than 1 minute.", None
                audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
                if len(audio.shape) > 1:
                    audio = librosa.to_mono(audio.transpose(1, 0))
                if sampling_rate != 16000:
                    audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
            elif vc_audio_mode == "TTS Audio":
                if len(tts_text) > 600 and limitation:
                    return "Text is too long", None
                if tts_text is None or tts_voice is None:
                    return "You need to enter text and select a voice", None
                asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
                audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
                vc_input = "tts.mp3"
            times = [0, 0, 0]
            f0_up_key = int(f0_up_key)
            audio_opt = vc.pipeline(
                hubert_model,
                net_g,
                0,
                audio,
                vc_input,
                times,
                f0_up_key,
                f0_method,
                file_index,
                # file_big_npy,
                index_rate,
                if_f0,
                filter_radius,
                tgt_sr,
                resample_sr,
                rms_mix_rate,
                version,
                protect,
                f0_file=None,
            )
            info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
            print(f"{model_title} | {info}")
            return info, (tgt_sr, audio_opt)
        except:
            info = traceback.format_exc()
            print(info)
            return info, (None, None)
    return vc_fn



def load_model():
    categories = []
    with open("weights/folder_info.json", "r", encoding="utf-8") as f:
        folder_info = json.load(f)
    for category_name, category_info in folder_info.items():
        if not category_info['enable']:
            continue
        category_title = category_info['title']
        category_folder = category_info['folder_path']
        models = []
        with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
            models_info = json.load(f)
        for character_name, info in models_info.items():
            if not info['enable']:
                continue
            model_title = info['title']
            model_name = info['model_path']
            model_author = info.get("author", None)
            model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
            model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
            cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
            tgt_sr = cpt["config"][-1]
            cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]  # n_spk
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
                model_version = "V1"
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
                model_version = "V2"
            del net_g.enc_q
            print(net_g.load_state_dict(cpt["weight"], strict=False))
            net_g.eval().to(config.device)
            if config.is_half:
                net_g = net_g.half()
            else:
                net_g = net_g.float()
            vc = VC(tgt_sr, config)
            print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
            models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, model_index)))
        categories.append([category_title, category_folder, models])
    return categories



def cut_vocal_and_inst(url, audio_provider, split_model):
    if url != "":
        if not os.path.exists("dl_audio"):
            os.mkdir("dl_audio")
        if audio_provider == "Youtube":
            ydl_opts = {
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
            }],
            "outtmpl": 'dl_audio/youtube_audio',
            }
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                ydl.download([url])
            audio_path = "dl_audio/youtube_audio.wav"
        else:
            # Spotify doesnt work.
            # Need to find other solution soon.
            ''' 
            command = f"spotdl download {url} --output dl_audio/.wav"
            result = subprocess.run(command.split(), stdout=subprocess.PIPE)
            print(result.stdout.decode())
            audio_path = "dl_audio/spotify_audio.wav"
            '''
        if split_model == "htdemucs":
            command = f"demucs --two-stems=vocals {audio_path} -o output"
            result = subprocess.run(command.split(), stdout=subprocess.PIPE)
            print(result.stdout.decode())
            return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
        else:
            command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
            result = subprocess.run(command.split(), stdout=subprocess.PIPE)
            print(result.stdout.decode())
            return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
    else:
        raise gr.Error("URL Required!")
        return None, None, None, None



def combine_vocal_and_inst(audio_data, audio_volume, split_model):
    if not os.path.exists("output/result"):
        os.mkdir("output/result")
    vocal_path = "output/result/output.wav"
    output_path = "output/result/combine.mp3"
    if split_model == "htdemucs":
        inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
    else:
        inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
    with wave.open(vocal_path, "w") as wave_file:
        wave_file.setnchannels(1) 
        wave_file.setsampwidth(2)
        wave_file.setframerate(audio_data[0])
        wave_file.writeframes(audio_data[1].tobytes())
    command =  f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
    result = subprocess.run(command.split(), stdout=subprocess.PIPE)
    print(result.stdout.decode())
    return output_path

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()