Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,240 +1,10 @@
|
|
1 |
-
import os
|
2 |
-
import glob
|
3 |
-
import json
|
4 |
-
import traceback
|
5 |
-
import logging
|
6 |
import gradio as gr
|
7 |
-
|
8 |
-
import librosa
|
9 |
-
import torch
|
10 |
-
import asyncio
|
11 |
-
import edge_tts
|
12 |
-
import yt_dlp
|
13 |
-
import ffmpeg
|
14 |
-
import subprocess
|
15 |
-
import sys
|
16 |
-
import io
|
17 |
-
import wave
|
18 |
-
from datetime import datetime
|
19 |
-
from fairseq import checkpoint_utils
|
20 |
-
from lib.infer_pack.models import (
|
21 |
-
SynthesizerTrnMs256NSFsid,
|
22 |
-
SynthesizerTrnMs256NSFsid_nono,
|
23 |
-
SynthesizerTrnMs768NSFsid,
|
24 |
-
SynthesizerTrnMs768NSFsid_nono,
|
25 |
-
)
|
26 |
-
from vc_infer_pipeline import VC
|
27 |
-
from config import Config
|
28 |
-
config = Config()
|
29 |
-
logging.getLogger("numba").setLevel(logging.WARNING)
|
30 |
-
limitation = os.getenv("SYSTEM") == "spaces"
|
31 |
|
32 |
-
audio_mode = []
|
33 |
-
f0method_mode = []
|
34 |
-
f0method_info = ""
|
35 |
-
if limitation is True:
|
36 |
-
audio_mode = ["Upload audio", "TTS Audio"]
|
37 |
-
f0method_mode = ["pm", "crepe", "harvest"]
|
38 |
-
f0method_info = "PM is fast, rmvpe is middle, Crepe or harvest is good but it was extremely slow (Default: PM)"
|
39 |
-
else:
|
40 |
-
audio_mode = ["Upload audio", "Youtube", "TTS Audio"]
|
41 |
-
f0method_mode = ["pm", "crepe", "harvest"]
|
42 |
-
f0method_info = "PM is fast, rmvpe is middle. Crepe or harvest is good but it was extremely slow (Default: PM))"
|
43 |
|
44 |
-
if os.path.isfile("rmvpe.pt"):
|
45 |
-
f0method_mode.insert(2, "rmvpe")
|
46 |
|
47 |
-
def create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, file_index):
|
48 |
-
def vc_fn(
|
49 |
-
vc_audio_mode,
|
50 |
-
vc_input,
|
51 |
-
vc_upload,
|
52 |
-
tts_text,
|
53 |
-
tts_voice,
|
54 |
-
f0_up_key,
|
55 |
-
f0_method,
|
56 |
-
index_rate,
|
57 |
-
filter_radius,
|
58 |
-
resample_sr,
|
59 |
-
rms_mix_rate,
|
60 |
-
protect,
|
61 |
-
):
|
62 |
-
try:
|
63 |
-
if vc_audio_mode == "Input path" or "Youtube" and vc_input != "":
|
64 |
-
audio, sr = librosa.load(vc_input, sr=16000, mono=True)
|
65 |
-
elif vc_audio_mode == "Upload audio":
|
66 |
-
if vc_upload is None:
|
67 |
-
return "You need to upload an audio", None
|
68 |
-
sampling_rate, audio = vc_upload
|
69 |
-
duration = audio.shape[0] / sampling_rate
|
70 |
-
if duration > 360 and limitation:
|
71 |
-
return "Please upload an audio file that is less than 1 minute.", None
|
72 |
-
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
73 |
-
if len(audio.shape) > 1:
|
74 |
-
audio = librosa.to_mono(audio.transpose(1, 0))
|
75 |
-
if sampling_rate != 16000:
|
76 |
-
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
77 |
-
elif vc_audio_mode == "TTS Audio":
|
78 |
-
if len(tts_text) > 600 and limitation:
|
79 |
-
return "Text is too long", None
|
80 |
-
if tts_text is None or tts_voice is None:
|
81 |
-
return "You need to enter text and select a voice", None
|
82 |
-
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
|
83 |
-
audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
|
84 |
-
vc_input = "tts.mp3"
|
85 |
-
times = [0, 0, 0]
|
86 |
-
f0_up_key = int(f0_up_key)
|
87 |
-
audio_opt = vc.pipeline(
|
88 |
-
hubert_model,
|
89 |
-
net_g,
|
90 |
-
0,
|
91 |
-
audio,
|
92 |
-
vc_input,
|
93 |
-
times,
|
94 |
-
f0_up_key,
|
95 |
-
f0_method,
|
96 |
-
file_index,
|
97 |
-
# file_big_npy,
|
98 |
-
index_rate,
|
99 |
-
if_f0,
|
100 |
-
filter_radius,
|
101 |
-
tgt_sr,
|
102 |
-
resample_sr,
|
103 |
-
rms_mix_rate,
|
104 |
-
version,
|
105 |
-
protect,
|
106 |
-
f0_file=None,
|
107 |
-
)
|
108 |
-
info = f"[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
|
109 |
-
print(f"{model_title} | {info}")
|
110 |
-
return info, (tgt_sr, audio_opt)
|
111 |
-
except:
|
112 |
-
info = traceback.format_exc()
|
113 |
-
print(info)
|
114 |
-
return info, (None, None)
|
115 |
-
return vc_fn
|
116 |
|
117 |
-
def load_model():
|
118 |
-
categories = []
|
119 |
-
with open("weights/folder_info.json", "r", encoding="utf-8") as f:
|
120 |
-
folder_info = json.load(f)
|
121 |
-
for category_name, category_info in folder_info.items():
|
122 |
-
if not category_info['enable']:
|
123 |
-
continue
|
124 |
-
category_title = category_info['title']
|
125 |
-
category_folder = category_info['folder_path']
|
126 |
-
models = []
|
127 |
-
with open(f"weights/{category_folder}/model_info.json", "r", encoding="utf-8") as f:
|
128 |
-
models_info = json.load(f)
|
129 |
-
for character_name, info in models_info.items():
|
130 |
-
if not info['enable']:
|
131 |
-
continue
|
132 |
-
model_title = info['title']
|
133 |
-
model_name = info['model_path']
|
134 |
-
model_author = info.get("author", None)
|
135 |
-
model_cover = f"weights/{category_folder}/{character_name}/{info['cover']}"
|
136 |
-
model_index = f"weights/{category_folder}/{character_name}/{info['feature_retrieval_library']}"
|
137 |
-
cpt = torch.load(f"weights/{category_folder}/{character_name}/{model_name}", map_location="cpu")
|
138 |
-
tgt_sr = cpt["config"][-1]
|
139 |
-
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
140 |
-
if_f0 = cpt.get("f0", 1)
|
141 |
-
version = cpt.get("version", "v1")
|
142 |
-
if version == "v1":
|
143 |
-
if if_f0 == 1:
|
144 |
-
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
145 |
-
else:
|
146 |
-
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
147 |
-
model_version = "V1"
|
148 |
-
elif version == "v2":
|
149 |
-
if if_f0 == 1:
|
150 |
-
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
151 |
-
else:
|
152 |
-
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
153 |
-
model_version = "V2"
|
154 |
-
del net_g.enc_q
|
155 |
-
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
156 |
-
net_g.eval().to(config.device)
|
157 |
-
if config.is_half:
|
158 |
-
net_g = net_g.half()
|
159 |
-
else:
|
160 |
-
net_g = net_g.float()
|
161 |
-
vc = VC(tgt_sr, config)
|
162 |
-
print(f"Model loaded: {character_name} / {info['feature_retrieval_library']} | ({model_version})")
|
163 |
-
models.append((character_name, model_title, model_author, model_cover, model_version, create_vc_fn(model_title, tgt_sr, net_g, vc, if_f0, version, model_index)))
|
164 |
-
categories.append([category_title, category_folder, models])
|
165 |
-
return categories
|
166 |
-
|
167 |
-
def cut_vocal_and_inst(url, audio_provider, split_model):
|
168 |
-
if url != "":
|
169 |
-
if not os.path.exists("dl_audio"):
|
170 |
-
os.mkdir("dl_audio")
|
171 |
-
if audio_provider == "Youtube":
|
172 |
-
ydl_opts = {
|
173 |
-
'format': 'bestaudio/best',
|
174 |
-
'postprocessors': [{
|
175 |
-
'key': 'FFmpegExtractAudio',
|
176 |
-
'preferredcodec': 'wav',
|
177 |
-
}],
|
178 |
-
"outtmpl": 'dl_audio/youtube_audio',
|
179 |
-
}
|
180 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
181 |
-
ydl.download([url])
|
182 |
-
audio_path = "dl_audio/youtube_audio.wav"
|
183 |
-
else:
|
184 |
-
# Spotify doesnt work.
|
185 |
-
# Need to find other solution soon.
|
186 |
-
'''
|
187 |
-
command = f"spotdl download {url} --output dl_audio/.wav"
|
188 |
-
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
189 |
-
print(result.stdout.decode())
|
190 |
-
audio_path = "dl_audio/spotify_audio.wav"
|
191 |
-
'''
|
192 |
-
if split_model == "htdemucs":
|
193 |
-
command = f"demucs --two-stems=vocals {audio_path} -o output"
|
194 |
-
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
195 |
-
print(result.stdout.decode())
|
196 |
-
return "output/htdemucs/youtube_audio/vocals.wav", "output/htdemucs/youtube_audio/no_vocals.wav", audio_path, "output/htdemucs/youtube_audio/vocals.wav"
|
197 |
-
else:
|
198 |
-
command = f"demucs --two-stems=vocals -n mdx_extra_q {audio_path} -o output"
|
199 |
-
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
200 |
-
print(result.stdout.decode())
|
201 |
-
return "output/mdx_extra_q/youtube_audio/vocals.wav", "output/mdx_extra_q/youtube_audio/no_vocals.wav", audio_path, "output/mdx_extra_q/youtube_audio/vocals.wav"
|
202 |
-
else:
|
203 |
-
raise gr.Error("URL Required!")
|
204 |
-
return None, None, None, None
|
205 |
|
206 |
-
def combine_vocal_and_inst(audio_data, audio_volume, split_model):
|
207 |
-
if not os.path.exists("output/result"):
|
208 |
-
os.mkdir("output/result")
|
209 |
-
vocal_path = "output/result/output.wav"
|
210 |
-
output_path = "output/result/combine.mp3"
|
211 |
-
if split_model == "htdemucs":
|
212 |
-
inst_path = "output/htdemucs/youtube_audio/no_vocals.wav"
|
213 |
-
else:
|
214 |
-
inst_path = "output/mdx_extra_q/youtube_audio/no_vocals.wav"
|
215 |
-
with wave.open(vocal_path, "w") as wave_file:
|
216 |
-
wave_file.setnchannels(1)
|
217 |
-
wave_file.setsampwidth(2)
|
218 |
-
wave_file.setframerate(audio_data[0])
|
219 |
-
wave_file.writeframes(audio_data[1].tobytes())
|
220 |
-
command = f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [1:a]volume={audio_volume}dB[v];[0:a][v]amix=inputs=2:duration=longest -b:a 320k -c:a libmp3lame {output_path}'
|
221 |
-
result = subprocess.run(command.split(), stdout=subprocess.PIPE)
|
222 |
-
print(result.stdout.decode())
|
223 |
-
return output_path
|
224 |
-
|
225 |
-
def load_hubert():
|
226 |
-
global hubert_model
|
227 |
-
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
228 |
-
["hubert_base.pt"],
|
229 |
-
suffix="",
|
230 |
-
)
|
231 |
-
hubert_model = models[0]
|
232 |
-
hubert_model = hubert_model.to(config.device)
|
233 |
-
if config.is_half:
|
234 |
-
hubert_model = hubert_model.half()
|
235 |
-
else:
|
236 |
-
hubert_model = hubert_model.float()
|
237 |
-
hubert_model.eval()
|
238 |
|
239 |
def change_audio_mode(vc_audio_mode):
|
240 |
if vc_audio_mode == "Input path":
|
@@ -346,9 +116,7 @@ if __name__ == '__main__':
|
|
346 |
with gr.Blocks(theme="nevreal/blues") as app:
|
347 |
gr.Markdown(
|
348 |
"# <center> Hololive RVC Models\n"
|
349 |
-
"### <center> will update every hololive ai model that i can find or make.\n"
|
350 |
"[](https://colab.research.google.com/github/aziib/hololive-rvc-models-v2/blob/main/hololive_rvc_models_v2.ipynb)\n\n"
|
351 |
-
"[](https://ko-fi.com/megaaziib)\n\n"
|
352 |
)
|
353 |
for (folder_title, folder, models) in categories:
|
354 |
with gr.TabItem(folder_title):
|
@@ -370,28 +138,29 @@ if __name__ == '__main__':
|
|
370 |
)
|
371 |
with gr.Row():
|
372 |
with gr.Column():
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
|
|
388 |
with gr.Column():
|
389 |
vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
|
390 |
f0method0 = gr.Radio(
|
391 |
label="Pitch extraction algorithm",
|
392 |
info=f0method_info,
|
393 |
choices=f0method_mode,
|
394 |
-
value="
|
395 |
interactive=True
|
396 |
)
|
397 |
index_rate1 = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from rvc import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def change_audio_mode(vc_audio_mode):
|
10 |
if vc_audio_mode == "Input path":
|
|
|
116 |
with gr.Blocks(theme="nevreal/blues") as app:
|
117 |
gr.Markdown(
|
118 |
"# <center> Hololive RVC Models\n"
|
|
|
119 |
"[](https://colab.research.google.com/github/aziib/hololive-rvc-models-v2/blob/main/hololive_rvc_models_v2.ipynb)\n\n"
|
|
|
120 |
)
|
121 |
for (folder_title, folder, models) in categories:
|
122 |
with gr.TabItem(folder_title):
|
|
|
138 |
)
|
139 |
with gr.Row():
|
140 |
with gr.Column():
|
141 |
+
with gr.Accordion("Main Options", open=False):
|
142 |
+
vc_audio_mode = gr.Dropdown(label="Input voice", choices=audio_mode, allow_custom_value=False, value="Upload audio")
|
143 |
+
# Input and Upload
|
144 |
+
vc_input = gr.Textbox(label="Input audio path", visible=False)
|
145 |
+
vc_upload = gr.Audio(label="Upload audio file", visible=True, interactive=True)
|
146 |
+
# Youtube
|
147 |
+
vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
|
148 |
+
vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
|
149 |
+
vc_split_model = gr.Dropdown(label="Splitter Model", choices=["htdemucs", "mdx_extra_q"], allow_custom_value=False, visible=False, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
|
150 |
+
vc_split = gr.Button("Split Audio", variant="primary", visible=False)
|
151 |
+
vc_vocal_preview = gr.Audio(label="Vocal Preview", visible=False)
|
152 |
+
vc_inst_preview = gr.Audio(label="Instrumental Preview", visible=False)
|
153 |
+
vc_audio_preview = gr.Audio(label="Audio Preview", visible=False)
|
154 |
+
# TTS
|
155 |
+
tts_text = gr.Textbox(visible=False, label="TTS text", info="Text to speech input")
|
156 |
+
tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
|
157 |
with gr.Column():
|
158 |
vc_transform0 = gr.Number(label="Transpose", value=0, info='Type "12" to change from male to female voice. Type "-12" to change female to male voice')
|
159 |
f0method0 = gr.Radio(
|
160 |
label="Pitch extraction algorithm",
|
161 |
info=f0method_info,
|
162 |
choices=f0method_mode,
|
163 |
+
value="rmvpe",
|
164 |
interactive=True
|
165 |
)
|
166 |
index_rate1 = gr.Slider(
|