Spaces:
Runtime error
Runtime error
pengdaqian
commited on
Commit
·
2e2adc3
1
Parent(s):
3f4fdab
fix
Browse files- .gitignore +1 -0
- app.py +43 -16
- requirements.txt +0 -1
- whisper/inference.py +3 -2
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.idea/
|
app.py
CHANGED
|
@@ -1,20 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from music.search import get_random_spit, get_albums
|
| 2 |
from vits.models import SynthesizerInfer
|
|
|
|
| 3 |
from omegaconf import OmegaConf
|
| 4 |
import torchcrepe
|
| 5 |
import torch
|
| 6 |
import io
|
| 7 |
-
import os
|
| 8 |
import gradio as gr
|
| 9 |
import librosa
|
| 10 |
import numpy as np
|
| 11 |
import soundfile
|
| 12 |
import random
|
| 13 |
-
from audio2numpy import open_audio
|
| 14 |
from spleeter.separator import Separator
|
| 15 |
from spleeter.audio.adapter import AudioAdapter
|
| 16 |
from pydub import AudioSegment
|
| 17 |
import scipy.io.wavfile
|
|
|
|
| 18 |
|
| 19 |
import logging
|
| 20 |
|
|
@@ -84,11 +88,13 @@ model.eval()
|
|
| 84 |
model.to(device)
|
| 85 |
separator = Separator('spleeter:2stems')
|
| 86 |
audio_loader = AudioAdapter.default()
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
def svc_change(argswave, argsspk):
|
| 90 |
argsppg = "svc_tmp.ppg.npy"
|
| 91 |
-
|
|
|
|
| 92 |
|
| 93 |
spk = np.load(argsspk)
|
| 94 |
spk = torch.FloatTensor(spk)
|
|
@@ -120,16 +126,16 @@ def svc_change(argswave, argsspk):
|
|
| 120 |
out_audio = []
|
| 121 |
has_audio = False
|
| 122 |
|
| 123 |
-
while
|
| 124 |
has_audio = True
|
| 125 |
-
if
|
| 126 |
cut_s = out_index
|
| 127 |
cut_s_48k = 0
|
| 128 |
else:
|
| 129 |
cut_s = out_index - hop_frame
|
| 130 |
cut_s_48k = hop_frame * hop_size
|
| 131 |
|
| 132 |
-
if
|
| 133 |
cut_e = out_index + out_chunk
|
| 134 |
cut_e_48k = 0
|
| 135 |
else:
|
|
@@ -148,8 +154,8 @@ def svc_change(argswave, argsspk):
|
|
| 148 |
out_audio.extend(sub_out)
|
| 149 |
out_index = out_index + out_chunk
|
| 150 |
|
| 151 |
-
if
|
| 152 |
-
if
|
| 153 |
cut_s = out_index - hop_frame
|
| 154 |
cut_s_48k = hop_frame * hop_size
|
| 155 |
else:
|
|
@@ -177,23 +183,40 @@ def np_to_audio_segment(fp_arr):
|
|
| 177 |
return sound
|
| 178 |
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
def svc_main(sid, input_audio):
|
| 181 |
if input_audio is None:
|
| 182 |
return "You need to upload an audio", None
|
| 183 |
sampling_rate, audio = input_audio
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
#
|
| 186 |
# prediction = separator.separate(audio)
|
| 187 |
# vocals, accompaniment = prediction["vocals"], prediction["accompaniment"]
|
| 188 |
soundfile.write(input_audio_tmp_file, audio, sampling_rate, format="wav")
|
| 189 |
-
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
-
|
|
|
|
| 193 |
|
| 194 |
vocals, sampling_rate = soundfile.read(vocals_filepath)
|
| 195 |
|
| 196 |
-
vocals = (vocals / np.iinfo(vocals.dtype).max).astype(np.float32)
|
| 197 |
if len(vocals.shape) > 1:
|
| 198 |
vocals = librosa.to_mono(vocals.transpose(1, 0))
|
| 199 |
if sampling_rate != 16000:
|
|
@@ -204,7 +227,7 @@ def svc_main(sid, input_audio):
|
|
| 204 |
soundfile.write(wav_path, vocals, 16000, format="wav")
|
| 205 |
|
| 206 |
out_vocals = svc_change(wav_path, f"configs/singers/singer00{sid}.npy")
|
| 207 |
-
out_vocals_filepath = os.path.join(
|
| 208 |
soundfile.write(out_vocals_filepath, out_vocals, 48000, format="wav")
|
| 209 |
|
| 210 |
sound1 = AudioSegment.from_file(out_vocals_filepath)
|
|
@@ -212,7 +235,11 @@ def svc_main(sid, input_audio):
|
|
| 212 |
|
| 213 |
played_togther = sound1.overlay(sound2)
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
|
| 218 |
def auto_search(name):
|
|
@@ -221,7 +248,7 @@ def auto_search(name):
|
|
| 221 |
album = random.choice(albums)
|
| 222 |
save_path = get_random_spit(album)
|
| 223 |
fp = save_path
|
| 224 |
-
signal, sampling_rate =
|
| 225 |
return sampling_rate, signal
|
| 226 |
|
| 227 |
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true'
|
| 4 |
+
|
| 5 |
from music.search import get_random_spit, get_albums
|
| 6 |
from vits.models import SynthesizerInfer
|
| 7 |
+
import whisper.inference
|
| 8 |
from omegaconf import OmegaConf
|
| 9 |
import torchcrepe
|
| 10 |
import torch
|
| 11 |
import io
|
|
|
|
| 12 |
import gradio as gr
|
| 13 |
import librosa
|
| 14 |
import numpy as np
|
| 15 |
import soundfile
|
| 16 |
import random
|
|
|
|
| 17 |
from spleeter.separator import Separator
|
| 18 |
from spleeter.audio.adapter import AudioAdapter
|
| 19 |
from pydub import AudioSegment
|
| 20 |
import scipy.io.wavfile
|
| 21 |
+
import uuid
|
| 22 |
|
| 23 |
import logging
|
| 24 |
|
|
|
|
| 88 |
model.to(device)
|
| 89 |
separator = Separator('spleeter:2stems')
|
| 90 |
audio_loader = AudioAdapter.default()
|
| 91 |
+
whisper_model = whisper.inference.load_model(os.path.join("whisper_pretrain", "medium.pt"))
|
| 92 |
|
| 93 |
|
| 94 |
def svc_change(argswave, argsspk):
|
| 95 |
argsppg = "svc_tmp.ppg.npy"
|
| 96 |
+
whisper.inference.pred_ppg(whisper_model, argswave, argsppg)
|
| 97 |
+
# os.system(f"python whisper/inference.py -w {argswave} -p {argsppg}")
|
| 98 |
|
| 99 |
spk = np.load(argsspk)
|
| 100 |
spk = torch.FloatTensor(spk)
|
|
|
|
| 126 |
out_audio = []
|
| 127 |
has_audio = False
|
| 128 |
|
| 129 |
+
while out_index + out_chunk < all_frame:
|
| 130 |
has_audio = True
|
| 131 |
+
if out_index == 0: # start frame
|
| 132 |
cut_s = out_index
|
| 133 |
cut_s_48k = 0
|
| 134 |
else:
|
| 135 |
cut_s = out_index - hop_frame
|
| 136 |
cut_s_48k = hop_frame * hop_size
|
| 137 |
|
| 138 |
+
if out_index + out_chunk + hop_frame > all_frame: # end frame
|
| 139 |
cut_e = out_index + out_chunk
|
| 140 |
cut_e_48k = 0
|
| 141 |
else:
|
|
|
|
| 154 |
out_audio.extend(sub_out)
|
| 155 |
out_index = out_index + out_chunk
|
| 156 |
|
| 157 |
+
if out_index < all_frame:
|
| 158 |
+
if has_audio:
|
| 159 |
cut_s = out_index - hop_frame
|
| 160 |
cut_s_48k = hop_frame * hop_size
|
| 161 |
else:
|
|
|
|
| 183 |
return sound
|
| 184 |
|
| 185 |
|
| 186 |
+
def get_dtype_max_value(dtype):
|
| 187 |
+
if np.issubdtype(dtype, np.integer):
|
| 188 |
+
info = np.iinfo(dtype)
|
| 189 |
+
return info.max
|
| 190 |
+
elif np.issubdtype(dtype, np.floating):
|
| 191 |
+
info = np.finfo(dtype)
|
| 192 |
+
return info.max
|
| 193 |
+
else:
|
| 194 |
+
raise ValueError("不支持的 dtype 类型")
|
| 195 |
+
|
| 196 |
+
|
| 197 |
def svc_main(sid, input_audio):
|
| 198 |
if input_audio is None:
|
| 199 |
return "You need to upload an audio", None
|
| 200 |
sampling_rate, audio = input_audio
|
| 201 |
+
uuid_value = uuid.uuid4()
|
| 202 |
+
uuid_string = str(uuid_value)
|
| 203 |
+
input_audio_tmp_file = f'{uuid_string}.wav'
|
| 204 |
+
tmpfile_path = '/tmp'
|
| 205 |
+
|
| 206 |
#
|
| 207 |
# prediction = separator.separate(audio)
|
| 208 |
# vocals, accompaniment = prediction["vocals"], prediction["accompaniment"]
|
| 209 |
soundfile.write(input_audio_tmp_file, audio, sampling_rate, format="wav")
|
| 210 |
+
if not os.path.exists(tmpfile_path):
|
| 211 |
+
os.makedirs(tmpfile_path)
|
| 212 |
+
separator.separate_to_file(input_audio_tmp_file, tmpfile_path)
|
| 213 |
|
| 214 |
+
curr_tmp_path = os.path.join(tmpfile_path, os.path.splitext(input_audio_tmp_file)[0])
|
| 215 |
+
vocals_filepath = os.path.join(curr_tmp_path, 'vocals.wav')
|
| 216 |
+
accompaniment_filepath = os.path.join(curr_tmp_path, 'accompaniment.wav')
|
| 217 |
|
| 218 |
vocals, sampling_rate = soundfile.read(vocals_filepath)
|
| 219 |
|
|
|
|
| 220 |
if len(vocals.shape) > 1:
|
| 221 |
vocals = librosa.to_mono(vocals.transpose(1, 0))
|
| 222 |
if sampling_rate != 16000:
|
|
|
|
| 227 |
soundfile.write(wav_path, vocals, 16000, format="wav")
|
| 228 |
|
| 229 |
out_vocals = svc_change(wav_path, f"configs/singers/singer00{sid}.npy")
|
| 230 |
+
out_vocals_filepath = os.path.join(curr_tmp_path, 'out_vocals.wav')
|
| 231 |
soundfile.write(out_vocals_filepath, out_vocals, 48000, format="wav")
|
| 232 |
|
| 233 |
sound1 = AudioSegment.from_file(out_vocals_filepath)
|
|
|
|
| 235 |
|
| 236 |
played_togther = sound1.overlay(sound2)
|
| 237 |
|
| 238 |
+
result_path = os.path.join(curr_tmp_path, 'out_song.wav')
|
| 239 |
+
played_togther.export(result_path, format="wav")
|
| 240 |
+
result, sampling_rate = soundfile.read(result_path)
|
| 241 |
+
|
| 242 |
+
return "Success", (sampling_rate, result)
|
| 243 |
|
| 244 |
|
| 245 |
def auto_search(name):
|
|
|
|
| 248 |
album = random.choice(albums)
|
| 249 |
save_path = get_random_spit(album)
|
| 250 |
fp = save_path
|
| 251 |
+
signal, sampling_rate = soundfile.read(fp)
|
| 252 |
return sampling_rate, signal
|
| 253 |
|
| 254 |
|
requirements.txt
CHANGED
|
@@ -14,5 +14,4 @@ tqdm
|
|
| 14 |
librosa
|
| 15 |
pydub
|
| 16 |
musicdl
|
| 17 |
-
audio2numpy
|
| 18 |
spleeter
|
|
|
|
| 14 |
librosa
|
| 15 |
pydub
|
| 16 |
musicdl
|
|
|
|
| 17 |
spleeter
|
whisper/inference.py
CHANGED
|
@@ -21,7 +21,7 @@ def pred_ppg(whisper: Whisper, wavPath, ppgPath):
|
|
| 21 |
audln = audio.shape[0]
|
| 22 |
ppg_a = []
|
| 23 |
idx_s = 0
|
| 24 |
-
while
|
| 25 |
short = audio[idx_s:idx_s + 25 * 16000]
|
| 26 |
idx_s = idx_s + 25 * 16000
|
| 27 |
ppgln = 25 * 16000 // 320
|
|
@@ -31,7 +31,7 @@ def pred_ppg(whisper: Whisper, wavPath, ppgPath):
|
|
| 31 |
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
|
| 32 |
ppg = ppg[:ppgln,] # [length, dim=1024]
|
| 33 |
ppg_a.extend(ppg)
|
| 34 |
-
if
|
| 35 |
short = audio[idx_s:audln]
|
| 36 |
ppgln = (audln - idx_s) // 320
|
| 37 |
# short = pad_or_trim(short)
|
|
@@ -48,6 +48,7 @@ if __name__ == "__main__":
|
|
| 48 |
parser.description = 'please enter embed parameter ...'
|
| 49 |
parser.add_argument("-w", "--wav", help="wav", dest="wav")
|
| 50 |
parser.add_argument("-p", "--ppg", help="ppg", dest="ppg")
|
|
|
|
| 51 |
args = parser.parse_args()
|
| 52 |
print(args.wav)
|
| 53 |
print(args.ppg)
|
|
|
|
| 21 |
audln = audio.shape[0]
|
| 22 |
ppg_a = []
|
| 23 |
idx_s = 0
|
| 24 |
+
while idx_s + 25 * 16000 < audln:
|
| 25 |
short = audio[idx_s:idx_s + 25 * 16000]
|
| 26 |
idx_s = idx_s + 25 * 16000
|
| 27 |
ppgln = 25 * 16000 // 320
|
|
|
|
| 31 |
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
|
| 32 |
ppg = ppg[:ppgln,] # [length, dim=1024]
|
| 33 |
ppg_a.extend(ppg)
|
| 34 |
+
if idx_s < audln:
|
| 35 |
short = audio[idx_s:audln]
|
| 36 |
ppgln = (audln - idx_s) // 320
|
| 37 |
# short = pad_or_trim(short)
|
|
|
|
| 48 |
parser.description = 'please enter embed parameter ...'
|
| 49 |
parser.add_argument("-w", "--wav", help="wav", dest="wav")
|
| 50 |
parser.add_argument("-p", "--ppg", help="ppg", dest="ppg")
|
| 51 |
+
|
| 52 |
args = parser.parse_args()
|
| 53 |
print(args.wav)
|
| 54 |
print(args.ppg)
|