Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import random | |
| from typing import Sequence, Mapping, Any, Union | |
| import torch | |
| import gradio as gr | |
| from PIL import Image | |
| from huggingface_hub import hf_hub_download | |
| import spaces # Se estiver no Hugging Face Spaces. Se não, pode remover. | |
| ##################################### | |
| # 1. Funções auxiliares de caminho e import | |
| ##################################### | |
| def find_path(name: str, path: str = None) -> str: | |
| """Busca recursivamente por uma pasta/arquivo 'name' a partir de 'path'.""" | |
| if path is None: | |
| path = os.getcwd() | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} encontrado em: {path_name}") | |
| return path_name | |
| parent_directory = os.path.dirname(path) | |
| if parent_directory == path: | |
| return None | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| """Adiciona o diretório ComfyUI ao sys.path, caso encontrado.""" | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"Diretório ComfyUI adicionado ao sys.path: {comfyui_path}") | |
| else: | |
| print("Não foi possível encontrar o diretório ComfyUI.") | |
| def add_extra_model_paths() -> None: | |
| """ | |
| Carrega configurações extras de caminhos de modelos, se existir | |
| um arquivo 'extra_model_paths.yaml'. | |
| """ | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| # Dependendo da versão do ComfyUI, pode estar em 'utils.extra_config' | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Arquivo extra_model_paths.yaml não foi encontrado.") | |
| def import_custom_nodes() -> None: | |
| """ | |
| Executa a inicialização de nós extras e o servidor do ComfyUI (caso necessário), | |
| similar ao que ocorre no segundo script. | |
| """ | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| init_extra_nodes() | |
| ##################################### | |
| # 2. Ajustando o ambiente ComfyUI | |
| ##################################### | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| import_custom_nodes() | |
| ##################################### | |
| # 3. Importando nós do ComfyUI | |
| ##################################### | |
| from comfy import model_management | |
| from nodes import ( | |
| NODE_CLASS_MAPPINGS, | |
| DualCLIPLoader, | |
| CLIPVisionLoader, | |
| StyleModelLoader, | |
| VAELoader, | |
| CLIPTextEncode, | |
| LoadImage, | |
| EmptyLatentImage, | |
| VAEDecode | |
| ) | |
| ##################################### | |
| # 4. Download de modelos (ajuste conforme sua necessidade) | |
| ##################################### | |
| # Exemplo de downloads (ajuste conforme seus modelos): | |
| os.makedirs("models/text_encoders", exist_ok=True) | |
| os.makedirs("models/style_models", exist_ok=True) | |
| os.makedirs("models/diffusion_models", exist_ok=True) | |
| os.makedirs("models/vae", exist_ok=True) | |
| os.makedirs("models/clip_vision", exist_ok=True) | |
| try: | |
| print("Baixando modelo Style (flux1-redux-dev.safetensors)...") | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
| filename="flux1-redux-dev.safetensors", | |
| local_dir="models/style_models") | |
| print("Baixando T5 (t5xxl_fp16.safetensors)...") | |
| hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", | |
| filename="t5xxl_fp16.safetensors", | |
| local_dir="models/text_encoders") | |
| print("Baixando CLIP L (ViT-L-14) ...") | |
| hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14", | |
| filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
| local_dir="models/text_encoders") | |
| print("Baixando VAE (ae.safetensors)...") | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="ae.safetensors", | |
| local_dir="models/vae") | |
| print("Baixando flux1-dev.safetensors (modelo difusão)...") | |
| hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="flux1-dev.safetensors", | |
| local_dir="models/diffusion_models") | |
| print("Baixando CLIP Vision (model.safetensors)...") | |
| hf_hub_download(repo_id="google/siglip-so400m-patch14-384", | |
| filename="model.safetensors", | |
| local_dir="models/clip_vision") | |
| except Exception as e: | |
| print("Algum download falhou:", e) | |
| ##################################### | |
| # 5. Carregar modelos via ComfyUI | |
| ##################################### | |
| # Carregando CLIP (DualCLIPLoader) | |
| dualcliploader = DualCLIPLoader() | |
| clip_model = dualcliploader.load_clip( | |
| clip_name1="t5xxl_fp16.safetensors", | |
| clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", | |
| type="flux" | |
| ) | |
| # Carregando CLIP Vision | |
| clipvisionloader = CLIPVisionLoader() | |
| clip_vision_model = clipvisionloader.load_clip( | |
| clip_name="model.safetensors" | |
| ) | |
| # Carregando Style Model | |
| stylemodelloader = StyleModelLoader() | |
| style_model = stylemodelloader.load_style_model( | |
| style_model_name="flux1-redux-dev.safetensors" | |
| ) | |
| # Carregando VAE | |
| vaeloader = VAELoader() | |
| vae_model = vaeloader.load_vae( | |
| vae_name="ae.safetensors" | |
| ) | |
| # (Opcional) Se tiver um model UNet, faça UNETLoader, etc. | |
| # Opcional: Carregar para GPU | |
| model_management.load_models_gpu([ | |
| loader[0] for loader in [clip_model, clip_vision_model, style_model, vae_model] | |
| ]) | |
| ##################################### | |
| # 6. Funções auxiliares e placeholders | |
| ##################################### | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| """Retorna o 'index' de um objeto que pode ser um dict ou lista.""" | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| ##################################### | |
| # 7. Definir workflow simplificado | |
| ##################################### | |
| # Se estiver no Hugging Face Spaces. Senão, remova. | |
| def generate_image( | |
| prompt: str, | |
| input_image_path: str, | |
| lora_weight: float, | |
| guidance: float, | |
| downsampling_factor: float, | |
| weight: float, | |
| seed: int, | |
| width: int, | |
| height: int, | |
| batch_size: int, | |
| steps: int, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """ | |
| Gera imagem usando um fluxo simplificado, similar ao primeiro script. | |
| """ | |
| try: | |
| # Garantindo repetibilidade do seed | |
| torch.manual_seed(seed) | |
| random.seed(seed) | |
| # 1) Encode Texto | |
| cliptextencode = CLIPTextEncode() | |
| encoded_text = cliptextencode.encode( | |
| text=prompt, | |
| clip=get_value_at_index(clip_model, 0) | |
| ) | |
| # 2) Carregar imagem de entrada | |
| loadimage = LoadImage() | |
| loaded_image = loadimage.load_image(image=input_image_path) | |
| # 3) Flux Guidance (se existir) | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| flux_guided = fluxguidance.append( | |
| guidance=guidance, | |
| conditioning=get_value_at_index(encoded_text, 0) | |
| ) | |
| # 4) Redux Advanced (aplicar style model) | |
| reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]() | |
| redux_result = reduxadvanced.apply_stylemodel( | |
| downsampling_factor=downsampling_factor, | |
| downsampling_function="area", | |
| mode="keep aspect ratio", | |
| weight=weight, | |
| conditioning=get_value_at_index(flux_guided, 0), | |
| style_model=get_value_at_index(style_model, 0), | |
| clip_vision=get_value_at_index(clip_vision_model, 0), | |
| image=get_value_at_index(loaded_image, 0) | |
| ) | |
| # 5) Empty Latent | |
| emptylatent = EmptyLatentImage() | |
| empty_latent = emptylatent.generate( | |
| width=width, | |
| height=height, | |
| batch_size=batch_size | |
| ) | |
| # 6) KSampler (no ComfyUI atual, há "KSamplerSelect" ou "KSampler") | |
| ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
| sampled = ksampler.sample( | |
| seed=seed, | |
| steps=steps, | |
| cfg=1, # Exemplo de CFG = 1 | |
| sampler_name="euler", | |
| scheduler="simple", | |
| denoise=1, | |
| model=get_value_at_index(style_model, 0), # Usa o style model como UNet? (depende da config) | |
| positive=get_value_at_index(redux_result, 0), | |
| negative=get_value_at_index(flux_guided, 0), | |
| latent_image=get_value_at_index(empty_latent, 0) | |
| ) | |
| # 7) Decodificar VAE | |
| vaedecode = VAEDecode() | |
| decoded = vaedecode.decode( | |
| samples=get_value_at_index(sampled, 0), | |
| vae=get_value_at_index(vae_model, 0) | |
| ) | |
| # 8) Salvar imagem | |
| output_dir = "output" | |
| os.makedirs(output_dir, exist_ok=True) | |
| temp_filename = f"Flux_{random.randint(0, 99999)}.png" | |
| temp_path = os.path.join(output_dir, temp_filename) | |
| # No ComfyUI, 'decoded[0]' pode ser um tensor [C,H,W] normalizado | |
| # ou algo no formato [N,C,H,W]. Precisamos converter para PIL: | |
| # Se for um batch, pegue o primeiro item. Ajuste se quiser batch maior. | |
| image_data = get_value_at_index(decoded, 0) | |
| # Normalmente, se for "float [0,1]" em C,H,W: | |
| # Precisamos mover pro CPU e converter em numpy | |
| if isinstance(image_data, torch.Tensor): | |
| image_data = image_data.cpu().numpy() | |
| # Se a imagem estiver em [C,H,W], transpor para [H,W,C] e escalar 0..255 | |
| if len(image_data.shape) == 3: | |
| image_data = image_data.transpose(1, 2, 0) | |
| image_data = (image_data * 255).clip(0, 255).astype("uint8") | |
| pil_image = Image.fromarray(image_data) | |
| pil_image.save(temp_path) | |
| return temp_path | |
| except Exception as e: | |
| print(f"Erro ao gerar imagem: {str(e)}") | |
| return None | |
| ##################################### | |
| # 8. Interface Gradio (similar ao primeiro snippet) | |
| ##################################### | |
| with gr.Blocks() as app: | |
| gr.Markdown("# FLUX Redux Image Generator (Simplificado)") | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Escreva seu prompt...", | |
| lines=5 | |
| ) | |
| input_image = gr.Image( | |
| label="Imagem de Entrada", | |
| type="filepath" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| lora_weight = gr.Slider( | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=0.6, | |
| label="LoRA Weight (não usado nesse fluxo)" | |
| ) | |
| guidance = gr.Slider( | |
| minimum=0, | |
| maximum=20, | |
| step=0.1, | |
| value=3.5, | |
| label="Guidance" | |
| ) | |
| downsampling_factor = gr.Slider( | |
| minimum=1, | |
| maximum=8, | |
| step=1, | |
| value=3, | |
| label="Downsampling Factor" | |
| ) | |
| weight = gr.Slider( | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=1.0, | |
| label="Redux Model Weight" | |
| ) | |
| with gr.Column(): | |
| seed = gr.Number( | |
| value=random.randint(1, 2**64), | |
| label="Seed", | |
| precision=0 | |
| ) | |
| width = gr.Number( | |
| value=512, | |
| label="Width", | |
| precision=0 | |
| ) | |
| height = gr.Number( | |
| value=512, | |
| label="Height", | |
| precision=0 | |
| ) | |
| batch_size = gr.Number( | |
| value=1, | |
| label="Batch Size", | |
| precision=0 | |
| ) | |
| steps = gr.Number( | |
| value=20, | |
| label="Steps", | |
| precision=0 | |
| ) | |
| generate_btn = gr.Button("Generate Image") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image", type="filepath") | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[ | |
| prompt_input, | |
| input_image, | |
| lora_weight, | |
| guidance, | |
| downsampling_factor, | |
| weight, | |
| seed, | |
| width, | |
| height, | |
| batch_size, | |
| steps | |
| ], | |
| outputs=[output_image] | |
| ) | |
| if __name__ == "__main__": | |
| # Você pode usar app.launch(share=True) se quiser compartilhar via link. | |
| app.launch() | |