Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,269 +1,159 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import random
|
| 3 |
-
import torch
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from PIL import Image
|
| 6 |
-
import gradio as gr
|
| 7 |
-
from
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
os.
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# Return the saved image for Gradio display
|
| 162 |
-
output_image = Image.open(temp_path)
|
| 163 |
-
return output_image
|
| 164 |
-
|
| 165 |
-
except Exception as e:
|
| 166 |
-
print(f"Error during generation: {str(e)}")
|
| 167 |
-
return None
|
| 168 |
-
|
| 169 |
-
# Gradio Interface
|
| 170 |
-
with gr.Blocks() as app:
|
| 171 |
-
gr.Markdown("# FLUX Redux Image Generator")
|
| 172 |
-
|
| 173 |
-
with gr.Row():
|
| 174 |
-
with gr.Column():
|
| 175 |
-
prompt_input = gr.Textbox(
|
| 176 |
-
label="Prompt",
|
| 177 |
-
placeholder="Enter your prompt here...",
|
| 178 |
-
lines=5
|
| 179 |
-
)
|
| 180 |
-
input_image = gr.Image(
|
| 181 |
-
label="Input Image",
|
| 182 |
-
type="filepath"
|
| 183 |
-
)
|
| 184 |
-
|
| 185 |
-
with gr.Row():
|
| 186 |
-
with gr.Column():
|
| 187 |
-
lora_weight = gr.Slider(
|
| 188 |
-
minimum=0,
|
| 189 |
-
maximum=2,
|
| 190 |
-
step=0.1,
|
| 191 |
-
value=0.6,
|
| 192 |
-
label="LoRA Weight"
|
| 193 |
-
)
|
| 194 |
-
guidance = gr.Slider(
|
| 195 |
-
minimum=0,
|
| 196 |
-
maximum=20,
|
| 197 |
-
step=0.1,
|
| 198 |
-
value=3.5,
|
| 199 |
-
label="Guidance"
|
| 200 |
-
)
|
| 201 |
-
downsampling_factor = gr.Slider(
|
| 202 |
-
minimum=1,
|
| 203 |
-
maximum=8,
|
| 204 |
-
step=1,
|
| 205 |
-
value=3,
|
| 206 |
-
label="Downsampling Factor"
|
| 207 |
-
)
|
| 208 |
-
weight = gr.Slider(
|
| 209 |
-
minimum=0,
|
| 210 |
-
maximum=2,
|
| 211 |
-
step=0.1,
|
| 212 |
-
value=1.0,
|
| 213 |
-
label="Model Weight"
|
| 214 |
-
)
|
| 215 |
-
with gr.Column():
|
| 216 |
-
seed = gr.Number(
|
| 217 |
-
value=random.randint(1, 2**64),
|
| 218 |
-
label="Seed",
|
| 219 |
-
precision=0
|
| 220 |
-
)
|
| 221 |
-
width = gr.Number(
|
| 222 |
-
value=1024,
|
| 223 |
-
label="Width",
|
| 224 |
-
precision=0
|
| 225 |
-
)
|
| 226 |
-
height = gr.Number(
|
| 227 |
-
value=1024,
|
| 228 |
-
label="Height",
|
| 229 |
-
precision=0
|
| 230 |
-
)
|
| 231 |
-
batch_size = gr.Number(
|
| 232 |
-
value=1,
|
| 233 |
-
label="Batch Size",
|
| 234 |
-
precision=0
|
| 235 |
-
)
|
| 236 |
-
steps = gr.Number(
|
| 237 |
-
value=20,
|
| 238 |
-
label="Steps",
|
| 239 |
-
precision=0
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
generate_btn = gr.Button("Generate Image")
|
| 243 |
-
|
| 244 |
-
with gr.Column():
|
| 245 |
-
output_image = gr.Image(label="Generated Image", type="pil")
|
| 246 |
-
|
| 247 |
-
generate_btn.click(
|
| 248 |
-
fn=generate_image,
|
| 249 |
-
inputs=[
|
| 250 |
-
prompt_input,
|
| 251 |
-
input_image,
|
| 252 |
-
lora_weight,
|
| 253 |
-
guidance,
|
| 254 |
-
downsampling_factor,
|
| 255 |
-
weight,
|
| 256 |
-
seed,
|
| 257 |
-
width,
|
| 258 |
-
height,
|
| 259 |
-
batch_size,
|
| 260 |
-
steps
|
| 261 |
-
],
|
| 262 |
-
outputs=[output_image]
|
| 263 |
-
)
|
| 264 |
-
|
| 265 |
-
if __name__ == "__main__":
|
| 266 |
-
app.launch()
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
#python app.py
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
from nodes import NODE_CLASS_MAPPINGS
|
| 9 |
+
import folder_paths
|
| 10 |
+
|
| 11 |
+
# Diretório base e de saída
|
| 12 |
+
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
| 13 |
+
output_dir = os.path.join(BASE_DIR, "output")
|
| 14 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 15 |
+
folder_paths.set_output_directory(output_dir)
|
| 16 |
+
|
| 17 |
+
# Baixar os modelos necessários
|
| 18 |
+
|
| 19 |
+
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev",
|
| 20 |
+
filename="flux1-redux-dev.safetensors",
|
| 21 |
+
local_dir="models/style_models")
|
| 22 |
+
|
| 23 |
+
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders",
|
| 24 |
+
filename="t5xxl_fp16.safetensors",
|
| 25 |
+
local_dir="models/text_encoders")
|
| 26 |
+
|
| 27 |
+
hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
|
| 28 |
+
filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
| 29 |
+
local_dir="models/text_encoders")
|
| 30 |
+
|
| 31 |
+
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
| 32 |
+
filename="ae.safetensors",
|
| 33 |
+
local_dir="models/vae")
|
| 34 |
+
|
| 35 |
+
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
|
| 36 |
+
filename="flux1-dev.safetensors.safetensors",
|
| 37 |
+
local_dir="models/diffusion_models")
|
| 38 |
+
|
| 39 |
+
hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
|
| 40 |
+
filename="model.safetensors",
|
| 41 |
+
local_dir="models/clip_vision")
|
| 42 |
+
|
| 43 |
+
hf_hub_download(repo_id="nftnik/NFTNIK-FLUX.1-dev-LoRA",
|
| 44 |
+
filename="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
| 45 |
+
local_dir="models/lora")
|
| 46 |
+
|
| 47 |
+
# Função para importar nodes personalizados
|
| 48 |
+
def import_custom_nodes():
|
| 49 |
+
"""Carregar nodes customizados."""
|
| 50 |
+
import asyncio
|
| 51 |
+
import execution
|
| 52 |
+
from nodes import init_extra_nodes
|
| 53 |
+
import server
|
| 54 |
+
|
| 55 |
+
loop = asyncio.new_event_loop()
|
| 56 |
+
asyncio.set_event_loop(loop)
|
| 57 |
+
|
| 58 |
+
server_instance = server.PromptServer(loop)
|
| 59 |
+
execution.PromptQueue(server_instance)
|
| 60 |
+
init_extra_nodes()
|
| 61 |
+
|
| 62 |
+
# Função principal de geração
|
| 63 |
+
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
|
| 64 |
+
import_custom_nodes()
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
with torch.inference_mode():
|
| 68 |
+
# Carregar CLIP
|
| 69 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
| 70 |
+
dualcliploader_loaded = dualcliploader.load_clip(
|
| 71 |
+
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
|
| 72 |
+
clip_name2="models/clip_vision/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
| 73 |
+
type="flux"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Codificar texto
|
| 77 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 78 |
+
encoded_text = cliptextencode.encode(
|
| 79 |
+
text=prompt,
|
| 80 |
+
clip=dualcliploader_loaded[0]
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
# Carregar modelos de estilo e LoRA
|
| 84 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
| 85 |
+
style_model = stylemodelloader.load_style_model(
|
| 86 |
+
style_model_name="models/style_models/flux1-redux-dev.safetensors"
|
| 87 |
+
)
|
| 88 |
+
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
| 89 |
+
lora_model = loraloadermodelonly.load_lora_model_only(
|
| 90 |
+
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
| 91 |
+
strength_model=lora_weight,
|
| 92 |
+
model=style_model[0]
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Processar imagem de entrada
|
| 96 |
+
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
| 97 |
+
loaded_image = loadimage.load_image(image=input_image)
|
| 98 |
+
|
| 99 |
+
# Configurações adicionais e saída
|
| 100 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
| 101 |
+
vae = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
|
| 102 |
+
|
| 103 |
+
# Decodificar e salvar
|
| 104 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
| 105 |
+
decoded = vaedecode.decode(
|
| 106 |
+
samples=lora_model[0],
|
| 107 |
+
vae=vae[0]
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
|
| 111 |
+
temp_path = os.path.join(output_dir, temp_filename)
|
| 112 |
+
Image.fromarray((decoded[0] * 255).astype("uint8")).save(temp_path)
|
| 113 |
+
|
| 114 |
+
return temp_path
|
| 115 |
+
except Exception as e:
|
| 116 |
+
print(f"Erro ao gerar imagem: {str(e)}")
|
| 117 |
+
return None
|
| 118 |
+
|
| 119 |
+
# Interface Gradio
|
| 120 |
+
with gr.Blocks() as app:
|
| 121 |
+
gr.Markdown("# Gerador de Imagens FLUX Redux")
|
| 122 |
+
with gr.Row():
|
| 123 |
+
with gr.Column():
|
| 124 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Digite seu prompt aqui...", lines=5)
|
| 125 |
+
input_image = gr.Image(label="Imagem de Entrada", type="filepath")
|
| 126 |
+
lora_weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=0.6, label="Peso LoRA")
|
| 127 |
+
guidance = gr.Slider(minimum=0, maximum=20, step=0.1, value=3.5, label="Orientação")
|
| 128 |
+
downsampling_factor = gr.Slider(minimum=1, maximum=8, step=1, value=3, label="Fator de Redução")
|
| 129 |
+
weight = gr.Slider(minimum=0, maximum=2, step=0.1, value=1.0, label="Peso do Modelo")
|
| 130 |
+
seed = gr.Number(value=random.randint(1, 2**64), label="Seed", precision=0)
|
| 131 |
+
width = gr.Number(value=1024, label="Largura", precision=0)
|
| 132 |
+
height = gr.Number(value=1024, label="Altura", precision=0)
|
| 133 |
+
batch_size = gr.Number(value=1, label="Tamanho do Lote", precision=0)
|
| 134 |
+
steps = gr.Number(value=20, label="Etapas", precision=0)
|
| 135 |
+
generate_btn = gr.Button("Gerar Imagem")
|
| 136 |
+
|
| 137 |
+
with gr.Column():
|
| 138 |
+
output_image = gr.Image(label="Imagem Gerada", type="filepath")
|
| 139 |
+
|
| 140 |
+
generate_btn.click(
|
| 141 |
+
fn=generate_image,
|
| 142 |
+
inputs=[
|
| 143 |
+
prompt_input,
|
| 144 |
+
input_image,
|
| 145 |
+
lora_weight,
|
| 146 |
+
guidance,
|
| 147 |
+
downsampling_factor,
|
| 148 |
+
weight,
|
| 149 |
+
seed,
|
| 150 |
+
width,
|
| 151 |
+
height,
|
| 152 |
+
batch_size,
|
| 153 |
+
steps
|
| 154 |
+
],
|
| 155 |
+
outputs=[output_image]
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
if __name__ == "__main__":
|
| 159 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|