Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +269 -0
- requirements.txt +0 -0
app.py
ADDED
|
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from nodes import NODE_CLASS_MAPPINGS
|
| 8 |
+
import folder_paths
|
| 9 |
+
|
| 10 |
+
# Configure base and output directories
|
| 11 |
+
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
| 12 |
+
output_dir = os.path.join(BASE_DIR, "output")
|
| 13 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 14 |
+
folder_paths.set_output_directory(output_dir)
|
| 15 |
+
|
| 16 |
+
def import_custom_nodes():
|
| 17 |
+
"""Loads custom nodes required for the workflow."""
|
| 18 |
+
import asyncio
|
| 19 |
+
import execution
|
| 20 |
+
from nodes import init_extra_nodes
|
| 21 |
+
import server
|
| 22 |
+
|
| 23 |
+
loop = asyncio.new_event_loop()
|
| 24 |
+
asyncio.set_event_loop(loop)
|
| 25 |
+
|
| 26 |
+
server_instance = server.PromptServer(loop)
|
| 27 |
+
execution.PromptQueue(server_instance)
|
| 28 |
+
init_extra_nodes()
|
| 29 |
+
|
| 30 |
+
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps):
|
| 31 |
+
"""
|
| 32 |
+
Main function to execute the workflow and generate an image.
|
| 33 |
+
"""
|
| 34 |
+
import_custom_nodes()
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
with torch.inference_mode():
|
| 38 |
+
# Load CLIP
|
| 39 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
| 40 |
+
dualcliploader_loaded = dualcliploader.load_clip(
|
| 41 |
+
clip_name1="t5xxl_fp16.safetensors",
|
| 42 |
+
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-TE-only-HF.safetensors",
|
| 43 |
+
type="flux",
|
| 44 |
+
device="default"
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
# Text Encoding
|
| 48 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 49 |
+
encoded_text = cliptextencode.encode(
|
| 50 |
+
text=prompt,
|
| 51 |
+
clip=dualcliploader_loaded[0]
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
# Load Style Model
|
| 55 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
| 56 |
+
style_model = stylemodelloader.load_style_model(
|
| 57 |
+
style_model_name="flux1-redux-dev.safetensors"
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# Load CLIP Vision
|
| 61 |
+
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
| 62 |
+
clip_vision = clipvisionloader.load_clip(
|
| 63 |
+
clip_name="sigclip_vision_patch14_384.safetensors"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# Load Input Image
|
| 67 |
+
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
| 68 |
+
loaded_image = loadimage.load_image(image=input_image)
|
| 69 |
+
|
| 70 |
+
# Load VAE
|
| 71 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
| 72 |
+
vae = vaeloader.load_vae(vae_name="ae.safetensors")
|
| 73 |
+
|
| 74 |
+
# Load UNET
|
| 75 |
+
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
| 76 |
+
unet = unetloader.load_unet(
|
| 77 |
+
unet_name="flux1-dev.sft",
|
| 78 |
+
weight_dtype="fp8_e4m3fn"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Load LoRA
|
| 82 |
+
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
| 83 |
+
lora_model = loraloadermodelonly.load_lora_model_only(
|
| 84 |
+
lora_name="NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
| 85 |
+
strength_model=lora_weight,
|
| 86 |
+
model=unet[0]
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Flux Guidance
|
| 90 |
+
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
| 91 |
+
flux_guidance = fluxguidance.append(
|
| 92 |
+
guidance=guidance,
|
| 93 |
+
conditioning=encoded_text[0]
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Redux Advanced
|
| 97 |
+
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
|
| 98 |
+
redux_result = reduxadvanced.apply_stylemodel(
|
| 99 |
+
downsampling_factor=downsampling_factor,
|
| 100 |
+
downsampling_function="area",
|
| 101 |
+
mode="keep aspect ratio",
|
| 102 |
+
weight=weight,
|
| 103 |
+
autocrop_margin=0.1,
|
| 104 |
+
conditioning=flux_guidance[0],
|
| 105 |
+
style_model=style_model[0],
|
| 106 |
+
clip_vision=clip_vision[0],
|
| 107 |
+
image=loaded_image[0]
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Empty Latent Image
|
| 111 |
+
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
| 112 |
+
empty_latent = emptylatentimage.generate(
|
| 113 |
+
width=width,
|
| 114 |
+
height=height,
|
| 115 |
+
batch_size=batch_size
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# KSampler
|
| 119 |
+
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
|
| 120 |
+
sampled = ksampler.sample(
|
| 121 |
+
seed=seed,
|
| 122 |
+
steps=steps,
|
| 123 |
+
cfg=1,
|
| 124 |
+
sampler_name="euler",
|
| 125 |
+
scheduler="simple",
|
| 126 |
+
denoise=1,
|
| 127 |
+
model=lora_model[0],
|
| 128 |
+
positive=redux_result[0],
|
| 129 |
+
negative=flux_guidance[0],
|
| 130 |
+
latent_image=empty_latent[0]
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# VAE Decode
|
| 134 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
| 135 |
+
decoded = vaedecode.decode(
|
| 136 |
+
samples=sampled[0],
|
| 137 |
+
vae=vae[0]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
# Save the image in the output directory
|
| 141 |
+
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
| 142 |
+
temp_filename = f"Flux_{random.randint(0, 99999)}"
|
| 143 |
+
saveimage.save_images(
|
| 144 |
+
filename_prefix=temp_filename,
|
| 145 |
+
images=decoded[0]
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Add a delay to ensure the file system updates
|
| 149 |
+
import time
|
| 150 |
+
time.sleep(0.5)
|
| 151 |
+
|
| 152 |
+
# Dynamically retrieve the correct file name
|
| 153 |
+
saved_files = [f for f in os.listdir(output_dir) if f.startswith(temp_filename)]
|
| 154 |
+
if not saved_files:
|
| 155 |
+
raise FileNotFoundError(f"Output file not found: Expected files starting with {temp_filename}")
|
| 156 |
+
|
| 157 |
+
# Get the full path of the saved file
|
| 158 |
+
temp_path = os.path.join(output_dir, saved_files[0])
|
| 159 |
+
print(f"Image saved at: {temp_path}")
|
| 160 |
+
|
| 161 |
+
# Return the saved image for Gradio display
|
| 162 |
+
output_image = Image.open(temp_path)
|
| 163 |
+
return output_image
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
print(f"Error during generation: {str(e)}")
|
| 167 |
+
return None
|
| 168 |
+
|
| 169 |
+
# Gradio Interface
|
| 170 |
+
with gr.Blocks() as app:
|
| 171 |
+
gr.Markdown("# FLUX Redux Image Generator")
|
| 172 |
+
|
| 173 |
+
with gr.Row():
|
| 174 |
+
with gr.Column():
|
| 175 |
+
prompt_input = gr.Textbox(
|
| 176 |
+
label="Prompt",
|
| 177 |
+
placeholder="Enter your prompt here...",
|
| 178 |
+
lines=5
|
| 179 |
+
)
|
| 180 |
+
input_image = gr.Image(
|
| 181 |
+
label="Input Image",
|
| 182 |
+
type="filepath"
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
with gr.Row():
|
| 186 |
+
with gr.Column():
|
| 187 |
+
lora_weight = gr.Slider(
|
| 188 |
+
minimum=0,
|
| 189 |
+
maximum=2,
|
| 190 |
+
step=0.1,
|
| 191 |
+
value=0.6,
|
| 192 |
+
label="LoRA Weight"
|
| 193 |
+
)
|
| 194 |
+
guidance = gr.Slider(
|
| 195 |
+
minimum=0,
|
| 196 |
+
maximum=20,
|
| 197 |
+
step=0.1,
|
| 198 |
+
value=3.5,
|
| 199 |
+
label="Guidance"
|
| 200 |
+
)
|
| 201 |
+
downsampling_factor = gr.Slider(
|
| 202 |
+
minimum=1,
|
| 203 |
+
maximum=8,
|
| 204 |
+
step=1,
|
| 205 |
+
value=3,
|
| 206 |
+
label="Downsampling Factor"
|
| 207 |
+
)
|
| 208 |
+
weight = gr.Slider(
|
| 209 |
+
minimum=0,
|
| 210 |
+
maximum=2,
|
| 211 |
+
step=0.1,
|
| 212 |
+
value=1.0,
|
| 213 |
+
label="Model Weight"
|
| 214 |
+
)
|
| 215 |
+
with gr.Column():
|
| 216 |
+
seed = gr.Number(
|
| 217 |
+
value=random.randint(1, 2**64),
|
| 218 |
+
label="Seed",
|
| 219 |
+
precision=0
|
| 220 |
+
)
|
| 221 |
+
width = gr.Number(
|
| 222 |
+
value=1024,
|
| 223 |
+
label="Width",
|
| 224 |
+
precision=0
|
| 225 |
+
)
|
| 226 |
+
height = gr.Number(
|
| 227 |
+
value=1024,
|
| 228 |
+
label="Height",
|
| 229 |
+
precision=0
|
| 230 |
+
)
|
| 231 |
+
batch_size = gr.Number(
|
| 232 |
+
value=1,
|
| 233 |
+
label="Batch Size",
|
| 234 |
+
precision=0
|
| 235 |
+
)
|
| 236 |
+
steps = gr.Number(
|
| 237 |
+
value=20,
|
| 238 |
+
label="Steps",
|
| 239 |
+
precision=0
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
generate_btn = gr.Button("Generate Image")
|
| 243 |
+
|
| 244 |
+
with gr.Column():
|
| 245 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
| 246 |
+
|
| 247 |
+
generate_btn.click(
|
| 248 |
+
fn=generate_image,
|
| 249 |
+
inputs=[
|
| 250 |
+
prompt_input,
|
| 251 |
+
input_image,
|
| 252 |
+
lora_weight,
|
| 253 |
+
guidance,
|
| 254 |
+
downsampling_factor,
|
| 255 |
+
weight,
|
| 256 |
+
seed,
|
| 257 |
+
width,
|
| 258 |
+
height,
|
| 259 |
+
batch_size,
|
| 260 |
+
steps
|
| 261 |
+
],
|
| 262 |
+
outputs=[output_image]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
app.launch()
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
#python app.py
|
requirements.txt
ADDED
|
File without changes
|