Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,105 +1,392 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
import json
|
4 |
-
import torch
|
5 |
import random
|
6 |
-
import
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
from
|
11 |
-
|
12 |
-
# -------------------------------------------------------------------------
|
13 |
-
# CONFIGURAÇÃO GERAL
|
14 |
-
# -------------------------------------------------------------------------
|
15 |
-
CONFIG = {
|
16 |
-
"base_model": "black-forest-labs/FLUX.1-dev",
|
17 |
-
"dtype": torch.float16, # Substituído por torch.float16 para economizar VRAM
|
18 |
-
"device": "cuda" if torch.cuda.is_available() else "cpu",
|
19 |
-
"max_seed": 2**32 - 1
|
20 |
-
}
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
# -------------------------------------------------------------------------
|
27 |
-
# CARREGANDO O MODELO BASE
|
28 |
-
# -------------------------------------------------------------------------
|
29 |
-
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=CONFIG["dtype"]).to(CONFIG["device"])
|
30 |
-
good_vae = AutoencoderKL.from_pretrained(CONFIG["base_model"], subfolder="vae", torch_dtype=CONFIG["dtype"]).to(CONFIG["device"])
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
# -------------------------------------------------------------------------
|
79 |
-
# INTERFACE GRADIO
|
80 |
-
# -------------------------------------------------------------------------
|
81 |
-
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
82 |
-
gr.Markdown("# FLUX Avatar Generator")
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
generate_button.click(
|
99 |
-
fn=generate_image,
|
100 |
-
inputs=[prompt, steps, seed, cfg_scale, width, height, lora_scale],
|
101 |
-
outputs=[output_image]
|
102 |
-
)
|
103 |
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import random
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import gradio as gr
|
6 |
+
import spaces
|
7 |
+
from diffusers import FluxPipeline
|
8 |
+
from translatepy import Translator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# -----------------------------------------------------------------------------
|
11 |
+
# CONFIGURATION
|
12 |
+
# -----------------------------------------------------------------------------
|
13 |
+
class Config:
|
14 |
+
MODEL_ID = "black-forest-labs/FLUX.1-dev"
|
15 |
+
DEFAULT_LORA = "nftnik/BR_ohwx_V1"
|
16 |
+
DEFAULT_WEIGHT_NAME = "BR_ohwx.safetensors"
|
17 |
+
MAX_SEED = int(np.iinfo(np.int32).max)
|
18 |
+
CSS = "footer { visibility: hidden; }"
|
19 |
+
DEFAULT_WIDTH = 896
|
20 |
+
DEFAULT_HEIGHT = 1152
|
21 |
+
DEFAULT_GUIDANCE_SCALE = 3.5
|
22 |
+
DEFAULT_STEPS = 35
|
23 |
+
DEFAULT_LORA_SCALE = 1.0
|
24 |
+
DEFAULT_TRIGGER_WORD = "ohwx"
|
25 |
+
# Memory optimization configs
|
26 |
+
ENABLE_MEMORY_EFFICIENT_ATTENTION = True
|
27 |
+
ENABLE_SEQUENTIAL_CPU_OFFLOAD = True
|
28 |
+
ENABLE_ATTENTION_SLICING = "max"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# -----------------------------------------------------------------------------
|
32 |
+
# FluxGenerator class to handle image generation
|
33 |
+
# -----------------------------------------------------------------------------
|
34 |
+
class FluxGenerator:
|
35 |
+
def __init__(self):
|
36 |
+
# Environment setup
|
37 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
38 |
+
self.translator = Translator()
|
39 |
+
self.device = self._get_optimal_device()
|
40 |
+
print(f"Using {self.device.upper()}")
|
41 |
+
|
42 |
+
# Initialize pipeline
|
43 |
+
self.pipe = None
|
44 |
+
self._initialize_pipeline()
|
45 |
+
|
46 |
+
def _get_optimal_device(self):
|
47 |
+
"""Determine the optimal device based on available resources"""
|
48 |
+
if torch.cuda.is_available():
|
49 |
+
# Check GPU memory
|
50 |
+
try:
|
51 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory
|
52 |
+
if gpu_memory > 10 * 1024 * 1024 * 1024: # More than 10GB
|
53 |
+
return "cuda"
|
54 |
+
else:
|
55 |
+
print("Limited GPU memory detected, using CPU with GPU acceleration")
|
56 |
+
return "cuda" # Still use CUDA but will apply memory optimizations
|
57 |
+
except:
|
58 |
+
print("Error checking GPU memory, falling back to CPU")
|
59 |
+
return "cpu"
|
60 |
+
else:
|
61 |
+
return "cpu"
|
62 |
+
|
63 |
+
def _initialize_pipeline(self):
|
64 |
+
"""Initialize the Flux pipeline with memory optimizations"""
|
65 |
+
try:
|
66 |
+
print("Loading Flux model...")
|
67 |
+
# Use more memory-efficient settings
|
68 |
+
pipe_kwargs = {
|
69 |
+
"torch_dtype": torch.bfloat16 if self.device == "cuda" else torch.float32,
|
70 |
+
}
|
71 |
+
|
72 |
+
# Initialize the pipeline
|
73 |
+
self.pipe = FluxPipeline.from_pretrained(
|
74 |
+
Config.MODEL_ID,
|
75 |
+
**pipe_kwargs
|
76 |
+
)
|
77 |
+
|
78 |
+
# Apply memory optimizations
|
79 |
+
if Config.ENABLE_MEMORY_EFFICIENT_ATTENTION and self.device == "cuda":
|
80 |
+
print("Enabling memory efficient attention")
|
81 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
82 |
+
|
83 |
+
if Config.ENABLE_ATTENTION_SLICING:
|
84 |
+
print("Enabling attention slicing")
|
85 |
+
self.pipe.enable_attention_slicing(Config.ENABLE_ATTENTION_SLICING)
|
86 |
+
|
87 |
+
if Config.ENABLE_SEQUENTIAL_CPU_OFFLOAD and self.device == "cuda":
|
88 |
+
print("Enabling sequential CPU offload")
|
89 |
+
self.pipe.enable_sequential_cpu_offload()
|
90 |
+
else:
|
91 |
+
# Only move to device if not using CPU offload
|
92 |
+
self.pipe = self.pipe.to(self.device)
|
93 |
+
|
94 |
+
# Load default LoRA
|
95 |
+
print(f"Loading default LoRA: {Config.DEFAULT_LORA}")
|
96 |
+
self.pipe.load_lora_weights(Config.DEFAULT_LORA, weight_name=Config.DEFAULT_WEIGHT_NAME)
|
97 |
+
|
98 |
+
print("Model initialization complete")
|
99 |
+
return self.pipe
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
error_msg = f"Error initializing pipeline: {str(e)}"
|
103 |
+
print(error_msg)
|
104 |
+
raise
|
105 |
|
106 |
+
def load_lora(self, lora_path):
|
107 |
+
"""Load a new LoRA model"""
|
108 |
+
try:
|
109 |
+
print(f"Unloading previous LoRA weights...")
|
110 |
+
self.pipe.unload_lora_weights()
|
111 |
+
|
112 |
+
if not lora_path:
|
113 |
+
print("No LoRA path provided, skipping LoRA loading")
|
114 |
+
return gr.update(value="")
|
115 |
+
|
116 |
+
print(f"Loading LoRA from {lora_path}...")
|
117 |
+
self.pipe.load_lora_weights(lora_path)
|
118 |
+
print("LoRA loaded successfully")
|
119 |
+
return gr.update(label="LoRA Loaded Successfully")
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
error_msg = f"Failed to load LoRA from {lora_path}: {str(e)}"
|
123 |
+
print(error_msg)
|
124 |
+
raise gr.Error(error_msg)
|
125 |
|
126 |
+
def _clear_memory(self):
|
127 |
+
"""Clear CUDA memory cache"""
|
128 |
+
if self.device == "cuda":
|
129 |
+
try:
|
130 |
+
print("Clearing CUDA memory cache...")
|
131 |
+
torch.cuda.empty_cache()
|
132 |
+
if hasattr(torch.cuda, 'amp') and hasattr(torch.cuda.amp, 'autocast'):
|
133 |
+
torch.cuda.amp.clear_autocast_cache()
|
134 |
+
except Exception as e:
|
135 |
+
print(f"Warning: Failed to clear CUDA memory: {str(e)}")
|
136 |
|
137 |
+
@spaces.GPU()
|
138 |
+
def generate(self, prompt, lora_word, lora_scale=Config.DEFAULT_LORA_SCALE,
|
139 |
+
width=Config.DEFAULT_WIDTH, height=Config.DEFAULT_HEIGHT,
|
140 |
+
guidance_scale=Config.DEFAULT_GUIDANCE_SCALE, steps=Config.DEFAULT_STEPS,
|
141 |
+
seed=-1, num_images=1):
|
142 |
+
"""Generate images from a prompt with memory optimizations"""
|
143 |
+
try:
|
144 |
+
print(f"Generating image for prompt: '{prompt}'")
|
145 |
+
|
146 |
+
# Clear memory before generation
|
147 |
+
self._clear_memory()
|
148 |
+
|
149 |
+
# Ensure we're using the right device
|
150 |
+
if not Config.ENABLE_SEQUENTIAL_CPU_OFFLOAD:
|
151 |
+
print(f"Moving model to {self.device}")
|
152 |
+
self.pipe.to(self.device)
|
153 |
+
|
154 |
+
# Handle seed
|
155 |
+
seed = random.randint(0, Config.MAX_SEED) if seed == -1 else int(seed)
|
156 |
+
print(f"Using seed: {seed}")
|
157 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
158 |
+
|
159 |
+
# Translate prompt if not in English
|
160 |
+
print("Translating prompt if needed...")
|
161 |
+
prompt_english = str(self.translator.translate(prompt, "English"))
|
162 |
+
full_prompt = f"{prompt_english} {lora_word}"
|
163 |
+
print(f"Full prompt: '{full_prompt}'")
|
164 |
+
|
165 |
+
# Lower resolution if on limited memory
|
166 |
+
if self.device == "cuda" and torch.cuda.get_device_properties(0).total_memory < 8 * 1024 * 1024 * 1024:
|
167 |
+
original_width, original_height = width, height
|
168 |
+
# Scale down to 85% if memory is tight
|
169 |
+
width = int(width * 0.85)
|
170 |
+
height = int(height * 0.85)
|
171 |
+
print(f"Limited memory detected. Scaling down resolution from {original_width}x{original_height} to {width}x{height}")
|
172 |
+
|
173 |
+
# Generate with autocast for memory efficiency
|
174 |
+
print(f"Starting generation with {steps} steps, guidance scale {guidance_scale}")
|
175 |
+
with torch.cuda.amp.autocast(enabled=self.device == "cuda"):
|
176 |
+
result = self.pipe(
|
177 |
+
prompt=full_prompt,
|
178 |
+
height=height,
|
179 |
+
width=width,
|
180 |
+
guidance_scale=guidance_scale,
|
181 |
+
output_type="pil",
|
182 |
+
num_inference_steps=steps,
|
183 |
+
num_images_per_prompt=num_images,
|
184 |
+
generator=generator,
|
185 |
+
joint_attention_kwargs={"scale": lora_scale},
|
186 |
+
)
|
187 |
+
|
188 |
+
print("Generation complete, returning images")
|
189 |
+
self._clear_memory() # Clear memory after generation
|
190 |
+
return result.images, seed
|
191 |
+
|
192 |
+
except Exception as e:
|
193 |
+
error_msg = f"Image generation failed: {str(e)}"
|
194 |
+
print(error_msg)
|
195 |
+
# Clear memory after error
|
196 |
+
self._clear_memory()
|
197 |
+
raise gr.Error(error_msg)
|
198 |
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
# -----------------------------------------------------------------------------
|
201 |
+
# UI Builder class
|
202 |
+
# -----------------------------------------------------------------------------
|
203 |
+
class FluxUI:
|
204 |
+
def __init__(self, generator):
|
205 |
+
self.generator = generator
|
206 |
+
self.example_prompts = [
|
207 |
+
["Medium-shot portrait, ohwx blue alien, wearing black techwear with a high collar, standing inside a futuristic VR showroom.", "ohwx", 0.9],
|
208 |
+
["ohwx blue alien, wearing black techwear with a high collar, immersed in a digital cybernetic landscape.", "ohwx", 0.9],
|
209 |
+
["full-body shot, ohwx blue alien, wearing black techwear with a high collar, black cyber sneakers, running through a neon-lit cyberpunk alley at night.", "ohwx", 0.9],
|
210 |
+
["ohwx blue alien, wearing black techwear with a high collar, sitting inside a sleek, high-tech VR capsule, immersed in an augmented reality experience.", "ohwx", 0.9]
|
211 |
+
]
|
212 |
+
|
213 |
+
def build(self):
|
214 |
+
"""Build and return the Gradio interface"""
|
215 |
+
with gr.Blocks(css=Config.CSS) as demo:
|
216 |
+
gr.HTML("<h1><center>BR METAVERSO - Avatar Generator</center></h1>")
|
217 |
+
|
218 |
+
# Status indicator
|
219 |
+
processing_status = gr.Markdown("**🟢 Ready**", visible=True)
|
220 |
+
|
221 |
+
with gr.Row():
|
222 |
+
with gr.Column(scale=4):
|
223 |
+
gallery = gr.Gallery(label="Flux Generated Image", columns=1, preview=True, height=600)
|
224 |
+
prompt_input = gr.Textbox(
|
225 |
+
label="Enter Your Prompt",
|
226 |
+
lines=2,
|
227 |
+
placeholder="Enter prompt for your avatar..."
|
228 |
+
)
|
229 |
+
generate_btn = gr.Button(value="Generate", variant="primary")
|
230 |
+
|
231 |
+
with gr.Accordion("Advanced Options", open=True):
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column():
|
234 |
+
width_slider = gr.Slider(
|
235 |
+
label="Width",
|
236 |
+
minimum=512,
|
237 |
+
maximum=1920,
|
238 |
+
step=8,
|
239 |
+
value=Config.DEFAULT_WIDTH
|
240 |
+
)
|
241 |
+
height_slider = gr.Slider(
|
242 |
+
label="Height",
|
243 |
+
minimum=512,
|
244 |
+
maximum=1920,
|
245 |
+
step=8,
|
246 |
+
value=Config.DEFAULT_HEIGHT
|
247 |
+
)
|
248 |
+
with gr.Column():
|
249 |
+
guidance_slider = gr.Slider(
|
250 |
+
label="Guidance Scale",
|
251 |
+
minimum=3.5,
|
252 |
+
maximum=7,
|
253 |
+
step=0.1,
|
254 |
+
value=Config.DEFAULT_GUIDANCE_SCALE
|
255 |
+
)
|
256 |
+
steps_slider = gr.Slider(
|
257 |
+
label="Steps",
|
258 |
+
minimum=1,
|
259 |
+
maximum=100,
|
260 |
+
step=1,
|
261 |
+
value=Config.DEFAULT_STEPS
|
262 |
+
)
|
263 |
+
|
264 |
+
with gr.Row():
|
265 |
+
with gr.Column():
|
266 |
+
seed_slider = gr.Slider(
|
267 |
+
label="Seed (-1 for random)",
|
268 |
+
minimum=-1,
|
269 |
+
maximum=Config.MAX_SEED,
|
270 |
+
step=1,
|
271 |
+
value=-1
|
272 |
+
)
|
273 |
+
nums_slider = gr.Slider(
|
274 |
+
label="Image Count",
|
275 |
+
minimum=1,
|
276 |
+
maximum=2,
|
277 |
+
step=1,
|
278 |
+
value=1
|
279 |
+
)
|
280 |
+
with gr.Column():
|
281 |
+
lora_scale_slider = gr.Slider(
|
282 |
+
label="LoRA Scale",
|
283 |
+
minimum=0.1,
|
284 |
+
maximum=2.0,
|
285 |
+
step=0.1,
|
286 |
+
value=Config.DEFAULT_LORA_SCALE
|
287 |
+
)
|
288 |
+
|
289 |
+
with gr.Row():
|
290 |
+
with gr.Column():
|
291 |
+
lora_add_text = gr.Textbox(
|
292 |
+
label="Flux LoRA Path",
|
293 |
+
lines=1,
|
294 |
+
value=Config.DEFAULT_LORA
|
295 |
+
)
|
296 |
+
with gr.Column():
|
297 |
+
lora_word_text = gr.Textbox(
|
298 |
+
label="Flux LoRA Trigger Word",
|
299 |
+
lines=1,
|
300 |
+
value=Config.DEFAULT_TRIGGER_WORD
|
301 |
+
)
|
302 |
+
|
303 |
+
load_lora_btn = gr.Button(value="Load Custom LoRA", variant="secondary")
|
304 |
+
|
305 |
+
# Memory optimization checkbox
|
306 |
+
with gr.Row():
|
307 |
+
memory_efficient = gr.Checkbox(
|
308 |
+
label="Enable Memory Optimizations",
|
309 |
+
value=True,
|
310 |
+
info="Reduces memory usage but may increase generation time"
|
311 |
+
)
|
312 |
+
|
313 |
+
# Examples section
|
314 |
+
gr.Examples(
|
315 |
+
examples=self.example_prompts,
|
316 |
+
inputs=[prompt_input, lora_word_text, lora_scale_slider],
|
317 |
+
cache_examples=False,
|
318 |
+
examples_per_page=4
|
319 |
+
)
|
320 |
+
|
321 |
+
# Wire up the event handlers
|
322 |
+
# Status update functions
|
323 |
+
def update_status_processing():
|
324 |
+
return "**⏳ Processing...**"
|
325 |
+
|
326 |
+
def update_status_done():
|
327 |
+
return "**✅ Done!**"
|
328 |
+
|
329 |
+
def update_memory_settings(enable_memory_opt):
|
330 |
+
global Config
|
331 |
+
Config.ENABLE_MEMORY_EFFICIENT_ATTENTION = enable_memory_opt
|
332 |
+
Config.ENABLE_SEQUENTIAL_CPU_OFFLOAD = enable_memory_opt
|
333 |
+
Config.ENABLE_ATTENTION_SLICING = "max" if enable_memory_opt else None
|
334 |
+
return gr.update()
|
335 |
|
336 |
+
# Generate button click workflow
|
337 |
+
generate_btn.click(
|
338 |
+
fn=update_status_processing,
|
339 |
+
inputs=[],
|
340 |
+
outputs=[processing_status]
|
341 |
+
).then(
|
342 |
+
fn=self.generator.generate,
|
343 |
+
inputs=[
|
344 |
+
prompt_input, lora_word_text, lora_scale_slider,
|
345 |
+
width_slider, height_slider, guidance_slider,
|
346 |
+
steps_slider, seed_slider, nums_slider
|
347 |
+
],
|
348 |
+
outputs=[gallery, seed_slider]
|
349 |
+
).then(
|
350 |
+
fn=update_status_done,
|
351 |
+
inputs=[],
|
352 |
+
outputs=[processing_status]
|
353 |
+
)
|
354 |
+
|
355 |
+
# Load LoRA button click workflow
|
356 |
+
load_lora_btn.click(
|
357 |
+
fn=self.generator.load_lora,
|
358 |
+
inputs=[lora_add_text],
|
359 |
+
outputs=[lora_add_text]
|
360 |
+
)
|
361 |
+
|
362 |
+
# Memory optimization checkbox event
|
363 |
+
memory_efficient.change(
|
364 |
+
fn=update_memory_settings,
|
365 |
+
inputs=[memory_efficient],
|
366 |
+
outputs=[]
|
367 |
+
)
|
368 |
+
|
369 |
+
return demo
|
370 |
|
|
|
|
|
|
|
|
|
|
|
371 |
|
372 |
+
# -----------------------------------------------------------------------------
|
373 |
+
# Main application
|
374 |
+
# -----------------------------------------------------------------------------
|
375 |
+
def main():
|
376 |
+
try:
|
377 |
+
# Create a generator with memory optimizations
|
378 |
+
generator = FluxGenerator()
|
379 |
+
|
380 |
+
# Build and launch UI
|
381 |
+
ui = FluxUI(generator)
|
382 |
+
demo = ui.build()
|
383 |
+
|
384 |
+
# Launch with low cache size to prevent memory issues
|
385 |
+
demo.queue(max_size=1).launch(share=False)
|
386 |
+
|
387 |
+
except Exception as e:
|
388 |
+
print(f"Application startup failed: {str(e)}")
|
389 |
+
# Show error in UI if possible
|
390 |
+
with gr.Blocks() as error_demo:
|
391 |
+
gr.Markdown(f"# Error Starting Application\n\n{str(e)}\n\nPlease check the logs for more details.")
|
392 |
+
gr.Markdown("This might be due to memory limitations or
|