Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,290 +1,132 @@
|
|
1 |
import os
|
2 |
import random
|
|
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
|
|
6 |
from diffusers import FluxPipeline
|
7 |
from translatepy import Translator
|
8 |
|
9 |
# -----------------------------------------------------------------------------
|
10 |
# CONFIGURATION
|
11 |
# -----------------------------------------------------------------------------
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# Memory optimization configs
|
25 |
-
ENABLE_MEMORY_EFFICIENT_ATTENTION = True
|
26 |
-
ENABLE_SEQUENTIAL_CPU_OFFLOAD = True
|
27 |
-
ENABLE_ATTENTION_SLICING = "max"
|
28 |
|
29 |
# -----------------------------------------------------------------------------
|
30 |
-
#
|
31 |
# -----------------------------------------------------------------------------
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
print(f"Using {self.device.upper()}")
|
38 |
-
|
39 |
-
self.pipe = None
|
40 |
-
self._initialize_pipeline()
|
41 |
-
|
42 |
-
def _get_optimal_device(self):
|
43 |
-
"""Determine the optimal device based on available resources"""
|
44 |
-
if torch.cuda.is_available():
|
45 |
-
try:
|
46 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory
|
47 |
-
if gpu_memory > 10 * 1024 * 1024 * 1024: # More than 10GB
|
48 |
-
return "cuda"
|
49 |
-
else:
|
50 |
-
print("Limited GPU memory detected. Will still use CUDA with memory optimizations.")
|
51 |
-
return "cuda"
|
52 |
-
except:
|
53 |
-
print("Error checking GPU memory, falling back to CPU")
|
54 |
-
return "cpu"
|
55 |
-
else:
|
56 |
-
return "cpu"
|
57 |
-
|
58 |
-
def _initialize_pipeline(self):
|
59 |
-
"""Initialize the Flux pipeline with memory optimizations"""
|
60 |
-
try:
|
61 |
-
print("Loading Flux model...")
|
62 |
-
pipe_kwargs = {
|
63 |
-
"torch_dtype": torch.bfloat16 if self.device == "cuda" else torch.float32,
|
64 |
-
}
|
65 |
-
self.pipe = FluxPipeline.from_pretrained(Config.MODEL_ID, **pipe_kwargs)
|
66 |
-
|
67 |
-
# Apply memory optimizations
|
68 |
-
if Config.ENABLE_MEMORY_EFFICIENT_ATTENTION and self.device == "cuda":
|
69 |
-
print("Enabling memory efficient attention")
|
70 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
71 |
-
|
72 |
-
if Config.ENABLE_ATTENTION_SLICING:
|
73 |
-
print("Enabling attention slicing")
|
74 |
-
self.pipe.enable_attention_slicing(Config.ENABLE_ATTENTION_SLICING)
|
75 |
-
|
76 |
-
if Config.ENABLE_SEQUENTIAL_CPU_OFFLOAD and self.device == "cuda":
|
77 |
-
print("Enabling sequential CPU offload")
|
78 |
-
self.pipe.enable_sequential_cpu_offload()
|
79 |
-
else:
|
80 |
-
# Only move to device if not offloading
|
81 |
-
self.pipe.to(self.device)
|
82 |
-
|
83 |
-
print(f"Loading default LoRA: {Config.DEFAULT_LORA}")
|
84 |
-
self.pipe.load_lora_weights(Config.DEFAULT_LORA, weight_name=Config.DEFAULT_WEIGHT_NAME)
|
85 |
-
|
86 |
-
print("Model initialization complete")
|
87 |
-
except Exception as e:
|
88 |
-
error_msg = f"Error initializing pipeline: {str(e)}"
|
89 |
-
print(error_msg)
|
90 |
-
raise
|
91 |
-
|
92 |
-
def load_lora(self, lora_path):
|
93 |
-
"""Load a new LoRA model"""
|
94 |
-
try:
|
95 |
-
print("Unloading previous LoRA weights...")
|
96 |
-
self.pipe.unload_lora_weights()
|
97 |
-
|
98 |
-
if not lora_path:
|
99 |
-
print("No LoRA path provided, skipping LoRA loading.")
|
100 |
-
return gr.update(value="")
|
101 |
-
|
102 |
-
print(f"Loading LoRA from {lora_path}...")
|
103 |
-
self.pipe.load_lora_weights(lora_path)
|
104 |
-
print("LoRA loaded successfully.")
|
105 |
-
return gr.update(label="LoRA Loaded Successfully")
|
106 |
-
except Exception as e:
|
107 |
-
error_msg = f"Failed to load LoRA from {lora_path}: {str(e)}"
|
108 |
-
print(error_msg)
|
109 |
-
raise gr.Error(error_msg)
|
110 |
-
|
111 |
-
def _clear_memory(self):
|
112 |
-
"""Clear CUDA memory cache"""
|
113 |
-
if self.device == "cuda":
|
114 |
-
try:
|
115 |
-
print("Clearing CUDA memory cache...")
|
116 |
-
torch.cuda.empty_cache()
|
117 |
-
if hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast"):
|
118 |
-
torch.cuda.amp.clear_autocast_cache()
|
119 |
-
except Exception as e:
|
120 |
-
print(f"Warning: Failed to clear CUDA memory: {str(e)}")
|
121 |
-
|
122 |
-
def generate(self, prompt, lora_word, lora_scale=Config.DEFAULT_LORA_SCALE,
|
123 |
-
width=Config.DEFAULT_WIDTH, height=Config.DEFAULT_HEIGHT,
|
124 |
-
guidance_scale=Config.DEFAULT_GUIDANCE_SCALE,
|
125 |
-
steps=Config.DEFAULT_STEPS, seed=-1, num_images=1):
|
126 |
-
"""Generate images from a prompt with memory optimizations."""
|
127 |
-
try:
|
128 |
-
print(f"Generating image for prompt: '{prompt}'")
|
129 |
-
self._clear_memory()
|
130 |
-
|
131 |
-
if not Config.ENABLE_SEQUENTIAL_CPU_OFFLOAD:
|
132 |
-
print(f"Moving model to {self.device}")
|
133 |
-
self.pipe.to(self.device)
|
134 |
-
|
135 |
-
seed = random.randint(0, Config.MAX_SEED) if seed == -1 else int(seed)
|
136 |
-
print(f"Using seed: {seed}")
|
137 |
-
generator = torch.Generator(device=self.device).manual_seed(seed)
|
138 |
-
|
139 |
-
print("Translating prompt if needed...")
|
140 |
-
prompt_english = str(self.translator.translate(prompt, "English"))
|
141 |
-
full_prompt = f"{prompt_english} {lora_word}"
|
142 |
-
print(f"Full prompt: '{full_prompt}'")
|
143 |
-
|
144 |
-
# If GPU memory is less than 8GB, scale resolution
|
145 |
-
if (self.device == "cuda" and
|
146 |
-
torch.cuda.get_device_properties(0).total_memory < 8 * 1024 * 1024 * 1024):
|
147 |
-
original_width, original_height = width, height
|
148 |
-
width = int(width * 0.85)
|
149 |
-
height = int(height * 0.85)
|
150 |
-
print(f"Memory is tight. Scaled resolution from {original_width}x{original_height} to {width}x{height}")
|
151 |
-
|
152 |
-
print(f"Starting generation with {steps} steps, guidance scale {guidance_scale}")
|
153 |
-
with torch.autocast("cuda", enabled=(self.device == "cuda")):
|
154 |
-
result = self.pipe(
|
155 |
-
prompt=full_prompt,
|
156 |
-
height=height,
|
157 |
-
width=width,
|
158 |
-
guidance_scale=guidance_scale,
|
159 |
-
output_type="pil",
|
160 |
-
num_inference_steps=steps,
|
161 |
-
num_images_per_prompt=num_images,
|
162 |
-
generator=generator,
|
163 |
-
joint_attention_kwargs={"scale": lora_scale},
|
164 |
-
)
|
165 |
-
print("Generation complete, returning images.")
|
166 |
-
self._clear_memory()
|
167 |
-
return result.images, seed
|
168 |
-
except Exception as e:
|
169 |
-
error_msg = f"Image generation failed: {str(e)}"
|
170 |
-
print(error_msg)
|
171 |
-
self._clear_memory()
|
172 |
-
raise gr.Error(error_msg)
|
173 |
-
|
174 |
|
175 |
# -----------------------------------------------------------------------------
|
176 |
-
#
|
177 |
# -----------------------------------------------------------------------------
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
["Medium-shot portrait, ohwx blue alien, wearing black techwear with a high collar, standing inside a futuristic VR showroom.", "ohwx", 0.9],
|
183 |
-
["ohwx blue alien, wearing black techwear with a high collar, immersed in a digital cybernetic landscape.", "ohwx", 0.9],
|
184 |
-
["full-body shot, ohwx blue alien, wearing black techwear with a high collar, black cyber sneakers, running through a neon-lit cyberpunk alley at night.", "ohwx", 0.9],
|
185 |
-
["ohwx blue alien, wearing black techwear with a high collar, sitting inside a sleek, high-tech VR capsule, immersed in an augmented reality experience.", "ohwx", 0.9]
|
186 |
-
]
|
187 |
-
|
188 |
-
def build(self):
|
189 |
-
with gr.Blocks(css=Config.CSS) as demo:
|
190 |
-
gr.HTML("<h1><center>BR METAVERSO - Avatar Generator</center></h1>")
|
191 |
-
|
192 |
-
status_markdown = gr.Markdown("**🟢 Ready**", visible=True)
|
193 |
-
|
194 |
-
with gr.Row():
|
195 |
-
with gr.Column(scale=4):
|
196 |
-
gallery = gr.Gallery(label="Flux Generated Image", columns=1, preview=True, height=600)
|
197 |
-
prompt_input = gr.Textbox(
|
198 |
-
label="Enter Your Prompt",
|
199 |
-
lines=2,
|
200 |
-
placeholder="Type your avatar description..."
|
201 |
-
)
|
202 |
-
generate_btn = gr.Button(value="Generate", variant="primary")
|
203 |
-
|
204 |
-
with gr.Accordion("Advanced Options", open=True):
|
205 |
-
with gr.Row():
|
206 |
-
with gr.Column():
|
207 |
-
width_slider = gr.Slider(label="Width", minimum=512, maximum=1920, step=8, value=Config.DEFAULT_WIDTH)
|
208 |
-
height_slider = gr.Slider(label="Height", minimum=512, maximum=1920, step=8, value=Config.DEFAULT_HEIGHT)
|
209 |
-
with gr.Column():
|
210 |
-
guidance_slider = gr.Slider(label="Guidance Scale", minimum=3.5, maximum=7, step=0.1, value=Config.DEFAULT_GUIDANCE_SCALE)
|
211 |
-
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=Config.DEFAULT_STEPS)
|
212 |
-
|
213 |
-
with gr.Row():
|
214 |
-
with gr.Column():
|
215 |
-
seed_slider = gr.Slider(label="Seed (-1 random)", minimum=-1, maximum=Config.MAX_SEED, step=1, value=-1)
|
216 |
-
nums_slider = gr.Slider(label="Image Count", minimum=1, maximum=2, step=1, value=1)
|
217 |
-
with gr.Column():
|
218 |
-
lora_scale_slider = gr.Slider(label="LoRA Scale", minimum=0.1, maximum=2.0, step=0.1, value=Config.DEFAULT_LORA_SCALE)
|
219 |
-
|
220 |
-
with gr.Row():
|
221 |
-
with gr.Column():
|
222 |
-
lora_add_text = gr.Textbox(label="Flux LoRA Path", lines=1, value=Config.DEFAULT_LORA)
|
223 |
-
with gr.Column():
|
224 |
-
lora_word_text = gr.Textbox(label="Flux LoRA Trigger Word", lines=1, value=Config.DEFAULT_TRIGGER_WORD)
|
225 |
-
|
226 |
-
load_lora_btn = gr.Button(value="Load Custom LoRA", variant="secondary")
|
227 |
-
|
228 |
-
# Examples
|
229 |
-
gr.Examples(
|
230 |
-
examples=self.example_prompts,
|
231 |
-
inputs=[prompt_input, lora_word_text, lora_scale_slider],
|
232 |
-
outputs=[],
|
233 |
-
cache_examples=False,
|
234 |
-
examples_per_page=4
|
235 |
-
)
|
236 |
-
|
237 |
-
# Helper functions for UI status
|
238 |
-
def update_status_processing():
|
239 |
-
return "**⏳ Processing...**"
|
240 |
-
|
241 |
-
def update_status_done():
|
242 |
-
return "**✅ Done!**"
|
243 |
-
|
244 |
-
# Workflow for generate
|
245 |
-
generate_btn.click(
|
246 |
-
fn=update_status_processing,
|
247 |
-
inputs=[],
|
248 |
-
outputs=[status_markdown]
|
249 |
-
).then(
|
250 |
-
fn=self.generator.generate,
|
251 |
-
inputs=[
|
252 |
-
prompt_input, lora_word_text, lora_scale_slider,
|
253 |
-
width_slider, height_slider, guidance_slider,
|
254 |
-
steps_slider, seed_slider, nums_slider
|
255 |
-
],
|
256 |
-
outputs=[gallery, seed_slider]
|
257 |
-
).then(
|
258 |
-
fn=update_status_done,
|
259 |
-
inputs=[],
|
260 |
-
outputs=[status_markdown]
|
261 |
-
)
|
262 |
-
|
263 |
-
# Load LoRA
|
264 |
-
load_lora_btn.click(
|
265 |
-
fn=self.generator.load_lora,
|
266 |
-
inputs=[lora_add_text],
|
267 |
-
outputs=[lora_add_text]
|
268 |
-
)
|
269 |
-
|
270 |
-
return demo
|
271 |
|
272 |
# -----------------------------------------------------------------------------
|
273 |
-
#
|
274 |
# -----------------------------------------------------------------------------
|
275 |
-
def
|
|
|
|
|
|
|
|
|
276 |
try:
|
277 |
-
|
278 |
-
|
279 |
-
demo = ui.build()
|
280 |
-
# Launch with default queue
|
281 |
-
demo.queue().launch()
|
282 |
except Exception as e:
|
283 |
-
|
284 |
-
with gr.Blocks() as error_demo:
|
285 |
-
gr.Markdown(f"# Error Starting Application\n\n{str(e)}")
|
286 |
-
gr.Markdown("Check logs for more details.")
|
287 |
-
error_demo.launch()
|
288 |
|
289 |
-
|
290 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
+
import re
|
4 |
+
import requests
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
import gradio as gr
|
8 |
+
import spaces
|
9 |
from diffusers import FluxPipeline
|
10 |
from translatepy import Translator
|
11 |
|
12 |
# -----------------------------------------------------------------------------
|
13 |
# CONFIGURATION
|
14 |
# -----------------------------------------------------------------------------
|
15 |
+
config = {
|
16 |
+
"model_id": "black-forest-labs/FLUX.1-dev",
|
17 |
+
"default_lora": "nftnik/BR_ohwx_V1",
|
18 |
+
"default_weight_name": "BR_ohwx.safetensors",
|
19 |
+
"max_seed": int(np.iinfo(np.int32).max),
|
20 |
+
"css": "footer { visibility: hidden; }",
|
21 |
+
"default_width": 896,
|
22 |
+
"default_height": 1152,
|
23 |
+
"default_guidance_scale": 3.5,
|
24 |
+
"default_steps": 35,
|
25 |
+
"default_loRa_scale": 1.0,
|
26 |
+
}
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# -----------------------------------------------------------------------------
|
29 |
+
# Environment and device setup
|
30 |
# -----------------------------------------------------------------------------
|
31 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
32 |
+
translator = Translator()
|
33 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
print(f"Using {device.upper()}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# -----------------------------------------------------------------------------
|
38 |
+
# Initialize the Flux pipeline and load default LoRA
|
39 |
# -----------------------------------------------------------------------------
|
40 |
+
pipe = FluxPipeline.from_pretrained(
|
41 |
+
config["model_id"], torch_dtype=torch.bfloat16
|
42 |
+
).to(device)
|
43 |
+
pipe.load_lora_weights(config["default_lora"], weight_name=config["default_weight_name"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# -----------------------------------------------------------------------------
|
46 |
+
# Function to load a new LoRA model
|
47 |
# -----------------------------------------------------------------------------
|
48 |
+
def enable_lora(lora_add: str):
|
49 |
+
pipe.unload_lora_weights()
|
50 |
+
if not lora_add:
|
51 |
+
return gr.update(value="")
|
52 |
+
url = f"https://huggingface.co/{lora_add}/tree/main"
|
53 |
try:
|
54 |
+
pipe.load_lora_weights(lora_add)
|
55 |
+
return gr.update(label="LoRA Loaded Now")
|
|
|
|
|
|
|
56 |
except Exception as e:
|
57 |
+
raise gr.Error(f"Failed to load {lora_add}: {e}")
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# -----------------------------------------------------------------------------
|
60 |
+
# Function to generate an image from a prompt
|
61 |
+
# -----------------------------------------------------------------------------
|
62 |
+
@spaces.GPU()
|
63 |
+
def generate_image(
|
64 |
+
prompt: str, lora_word: str, lora_scale: float = config["default_loRa_scale"],
|
65 |
+
width: int = config["default_width"], height: int = config["default_height"],
|
66 |
+
guidance_scale: float = config["default_guidance_scale"], steps: int = config["default_steps"],
|
67 |
+
seed: int = -1, nums: int = 1
|
68 |
+
):
|
69 |
+
pipe.to(device)
|
70 |
+
seed = random.randint(0, config["max_seed"]) if seed == -1 else int(seed)
|
71 |
+
prompt_english = str(translator.translate(prompt, "English"))
|
72 |
+
full_prompt = f"{prompt_english} {lora_word}"
|
73 |
+
generator = torch.Generator().manual_seed(seed)
|
74 |
+
|
75 |
+
result = pipe(
|
76 |
+
prompt=full_prompt, height=height, width=width, guidance_scale=guidance_scale,
|
77 |
+
output_type="pil", num_inference_steps=steps, num_images_per_prompt=nums,
|
78 |
+
generator=generator, joint_attention_kwargs={"scale": lora_scale},
|
79 |
+
)
|
80 |
+
return result.images, seed
|
81 |
+
|
82 |
+
# -----------------------------------------------------------------------------
|
83 |
+
# Gradio UI
|
84 |
+
# -----------------------------------------------------------------------------
|
85 |
+
example_prompts = [
|
86 |
+
["Medium-shot portrait, ohwx blue alien, wearing black techwear with a high collar, standing inside a futuristic VR showroom.", "ohwx", 0.9],
|
87 |
+
["ohwx blue alien, wearing black techwear with a high collar, immersed in a digital cybernetic landscape.", "ohwx", 0.9],
|
88 |
+
["full-body shot, ohwx blue alien, wearing black techwear with a high collar, black cyber sneakers, running through a neon-lit cyberpunk alley at night.", "ohwx", 0.9],
|
89 |
+
["ohwx blue alien, wearing black techwear with a high collar, sitting inside a sleek, high-tech VR capsule, immersed in an augmented reality experience.", "ohwx", 0.9]
|
90 |
+
]
|
91 |
+
|
92 |
+
with gr.Blocks(css=config["css"]) as demo:
|
93 |
+
gr.HTML("<h1><center>BR METAVERSO - Avatar Generator</center></h1>")
|
94 |
+
|
95 |
+
processing_status = gr.Markdown("**🟢 Ready**", visible=True) # Status indicator
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column(scale=4):
|
99 |
+
gallery = gr.Gallery(label="Flux Generated Image", columns=1, preview=True, height=600)
|
100 |
+
prompt_input = gr.Textbox(label="Enter Your Prompt", lines=2, placeholder="Enter prompt...")
|
101 |
+
generate_btn = gr.Button(variant="primary")
|
102 |
+
with gr.Accordion("Advanced Options", open=True):
|
103 |
+
width_slider = gr.Slider(label="Width", minimum=512, maximum=1920, step=8, value=config["default_width"])
|
104 |
+
height_slider = gr.Slider(label="Height", minimum=512, maximum=1920, step=8, value=config["default_height"])
|
105 |
+
guidance_slider = gr.Slider(label="Guidance Scale", minimum=3.5, maximum=7, step=0.1, value=config["default_guidance_scale"])
|
106 |
+
steps_slider = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=config["default_steps"])
|
107 |
+
seed_slider = gr.Slider(label="Seed", minimum=-1, maximum=config["max_seed"], step=1, value=-1)
|
108 |
+
nums_slider = gr.Slider(label="Image Count", minimum=1, maximum=2, step=1, value=1)
|
109 |
+
lora_scale_slider = gr.Slider(label="LoRA Scale", minimum=0.1, maximum=2.0, step=0.1, value=config["default_loRa_scale"])
|
110 |
+
lora_add_text = gr.Textbox(label="Flux LoRA", lines=1, value=config["default_lora"])
|
111 |
+
lora_word_text = gr.Textbox(label="Flux LoRA Trigger Word", lines=1, value="ohwx")
|
112 |
+
load_lora_btn = gr.Button(value="Load LoRA", variant="secondary")
|
113 |
+
|
114 |
+
gr.Examples(examples=example_prompts, inputs=[prompt_input, lora_word_text, lora_scale_slider], cache_examples=False, examples_per_page=4)
|
115 |
+
|
116 |
+
# Ensuring processing status updates correctly
|
117 |
+
def update_status():
|
118 |
+
return "**⏳ Processing...**"
|
119 |
+
|
120 |
+
generate_btn.click(fn=update_status, inputs=[], outputs=[processing_status]).then(
|
121 |
+
fn=generate_image,
|
122 |
+
inputs=[prompt_input, lora_word_text, lora_scale_slider, width_slider, height_slider, guidance_slider, steps_slider, seed_slider, nums_slider],
|
123 |
+
outputs=[gallery, seed_slider]
|
124 |
+
).then(
|
125 |
+
fn=lambda: "**✅ Done!**",
|
126 |
+
inputs=[],
|
127 |
+
outputs=[processing_status]
|
128 |
+
)
|
129 |
+
|
130 |
+
load_lora_btn.click(fn=enable_lora, inputs=[lora_add_text], outputs=lora_add_text)
|
131 |
+
|
132 |
+
demo.queue().launch()
|