Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -29,29 +29,19 @@ class PDFChatbot:
|
|
| 29 |
|
| 30 |
|
| 31 |
pdf_directory = "data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
import os
|
| 34 |
-
import PyPDF2
|
| 35 |
-
from langchain.vectorstores import FAISS
|
| 36 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
| 37 |
-
from langchain.docstore.document import Document
|
| 38 |
-
|
| 39 |
-
pdf_directory = "path_to_your_pdf_folder"
|
| 40 |
-
user_question = "your query here"
|
| 41 |
-
|
| 42 |
-
all_text = ""
|
| 43 |
-
|
| 44 |
-
# Step 1: Read and extract text from all PDFs
|
| 45 |
-
for filename in os.listdir(pdf_directory):
|
| 46 |
-
if filename.lower().endswith(".pdf"):
|
| 47 |
-
pdf_path = os.path.join(pdf_directory, filename)
|
| 48 |
-
with open(pdf_path, "rb") as pdf_file:
|
| 49 |
-
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 50 |
-
for page in pdf_reader.pages:
|
| 51 |
-
page_text = page.extract_text()
|
| 52 |
-
if page_text:
|
| 53 |
-
all_text += page_text + "\n"
|
| 54 |
-
|
| 55 |
# Step 2: Split text into chunks of ~3000 characters
|
| 56 |
words = all_text.split()
|
| 57 |
chunks = []
|
|
@@ -80,7 +70,6 @@ for filename in os.listdir(pdf_directory):
|
|
| 80 |
|
| 81 |
# Step 5: Return the content of the top relevant chunks
|
| 82 |
return_text = "\n\n".join([doc.page_content for doc in relevant_chunks])
|
| 83 |
-
print(return_text) # Or return from a function if used inside one
|
| 84 |
|
| 85 |
def chat_with_pdf(self, user_question: str, pdf_content: str) -> str:
|
| 86 |
"""Generate response using Azure OpenAI based on PDF content and user question."""
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
pdf_directory = "data"
|
| 32 |
+
all_text = ""
|
| 33 |
+
|
| 34 |
+
# Step 1: Read and extract text from all PDFs
|
| 35 |
+
for filename in os.listdir(pdf_directory):
|
| 36 |
+
if filename.lower().endswith(".pdf"):
|
| 37 |
+
pdf_path = os.path.join(pdf_directory, filename)
|
| 38 |
+
with open(pdf_path, "rb") as pdf_file:
|
| 39 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 40 |
+
for page in pdf_reader.pages:
|
| 41 |
+
page_text = page.extract_text()
|
| 42 |
+
if page_text:
|
| 43 |
+
all_text += page_text + "\n"
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
# Step 2: Split text into chunks of ~3000 characters
|
| 46 |
words = all_text.split()
|
| 47 |
chunks = []
|
|
|
|
| 70 |
|
| 71 |
# Step 5: Return the content of the top relevant chunks
|
| 72 |
return_text = "\n\n".join([doc.page_content for doc in relevant_chunks])
|
|
|
|
| 73 |
|
| 74 |
def chat_with_pdf(self, user_question: str, pdf_content: str) -> str:
|
| 75 |
"""Generate response using Azure OpenAI based on PDF content and user question."""
|