Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,11 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
7 |
from openai import OpenAI
|
8 |
from langchain_openai import ChatOpenAI
|
9 |
from typing import List, Dict
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load environment variables
|
11 |
OPENAI_API_KEY = os.getenv("OPENAI_API")
|
12 |
TOKEN=os.getenv('HF_TOKEN')
|
@@ -20,7 +25,45 @@ class PDFChatbot:
|
|
20 |
|
21 |
def get_relevant_context(self, user_question: str) -> List[str]:
|
22 |
"""Split text into smaller chunks for better processing."""
|
23 |
-
db = FAISS.load_local('mbaldb', HuggingFaceEmbeddings(model_name='bkai-foundation-models/vietnamese-bi-encoder'), allow_dangerous_deserialization = True )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
relevant_chunks = db.similarity_search(user_question, k=3)
|
25 |
relevant_chunks = [chunk.page_content for chunk in relevant_chunks]
|
26 |
return "\n\n".join(relevant_chunks)
|
|
|
7 |
from openai import OpenAI
|
8 |
from langchain_openai import ChatOpenAI
|
9 |
from typing import List, Dict
|
10 |
+
import fitz # PyMuPDF
|
11 |
+
from langchain.schema import Document
|
12 |
+
from langchain_experimental.text_splitter import SemanticChunker # module for chunking text
|
13 |
+
import os
|
14 |
+
|
15 |
# Load environment variables
|
16 |
OPENAI_API_KEY = os.getenv("OPENAI_API")
|
17 |
TOKEN=os.getenv('HF_TOKEN')
|
|
|
25 |
|
26 |
def get_relevant_context(self, user_question: str) -> List[str]:
|
27 |
"""Split text into smaller chunks for better processing."""
|
28 |
+
# db = FAISS.load_local('mbaldb', HuggingFaceEmbeddings(model_name='bkai-foundation-models/vietnamese-bi-encoder'), allow_dangerous_deserialization = True )
|
29 |
+
|
30 |
+
|
31 |
+
pdf_directory = "data"
|
32 |
+
|
33 |
+
# Duyệt qua các file trong thư mục và đọc từng file PDF
|
34 |
+
pdf_texts = []
|
35 |
+
for filename in os.listdir(pdf_directory):
|
36 |
+
if filename.endswith(".pdf"):
|
37 |
+
file_path = os.path.join(pdf_directory, filename)
|
38 |
+
|
39 |
+
# Mở file PDF
|
40 |
+
doc = fitz.open(file_path)
|
41 |
+
|
42 |
+
# Trích xuất toàn bộ văn bản từ từng trang
|
43 |
+
full_text = ""
|
44 |
+
for page_num in range(doc.page_count):
|
45 |
+
page = doc.load_page(page_num)
|
46 |
+
full_text += page.get_text("text", flags=11)
|
47 |
+
|
48 |
+
pdf_texts.append({"file": filename, "text": full_text})
|
49 |
+
|
50 |
+
documents = [
|
51 |
+
Document(page_content=doc['text'], metadata={'file': doc['file']})
|
52 |
+
for doc in pdf_texts # Assuming pdf_texts is a list of dictionaries like {'file': filename, 'text': full_text}
|
53 |
+
]
|
54 |
+
|
55 |
+
semantic_splitter = SemanticChunker(
|
56 |
+
embeddings= HuggingFaceEmbeddings(model_name='bkai-foundation-models/vietnamese-bi-encoder'),
|
57 |
+
buffer_size=1, # total sentence collected before perform text split
|
58 |
+
breakpoint_threshold_type='percentile', # set splitting style: 'percentage' of similarity
|
59 |
+
breakpoint_threshold_amount=95, # split text if similarity score > 95%
|
60 |
+
min_chunk_size=500,
|
61 |
+
add_start_index=True, # assign index for chunk
|
62 |
+
)
|
63 |
+
|
64 |
+
docs = semantic_splitter.split_documents(documents)
|
65 |
+
db = FAISS.from_documents(docs, HuggingFaceEmbeddings(model_name='bkai-foundation-models/vietnamese-bi-encoder'))
|
66 |
+
|
67 |
relevant_chunks = db.similarity_search(user_question, k=3)
|
68 |
relevant_chunks = [chunk.page_content for chunk in relevant_chunks]
|
69 |
return "\n\n".join(relevant_chunks)
|