Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,6 @@ __import__('pysqlite3')
|
|
2 |
import sys
|
3 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
4 |
|
5 |
-
# DATABASES = {
|
6 |
-
# 'default': {
|
7 |
-
# 'ENGINE': 'django.db.backends.sqlite3',
|
8 |
-
# 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
|
9 |
-
# }
|
10 |
-
# }
|
11 |
import streamlit as st
|
12 |
from huggingface_hub import InferenceClient
|
13 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate
|
@@ -119,7 +113,7 @@ def rag_query(query):
|
|
119 |
]
|
120 |
|
121 |
# Get the response from the client
|
122 |
-
response_content = client.chat_completion(messages=messages, max_tokens=
|
123 |
|
124 |
# Process the response content
|
125 |
response = response_content.choices[0].message.content.split("Answer:")[-1].strip()
|
@@ -127,7 +121,7 @@ def rag_query(query):
|
|
127 |
# If the response is empty or very short, or if no relevant documents were found, use the LLM's default knowledge
|
128 |
if not context or len(response.split()) < 35 or not retrieved_docs:
|
129 |
messages = [{"role": "user", "content": query}]
|
130 |
-
response_content = client.chat_completion(messages=messages, max_tokens=
|
131 |
response = response_content.choices[0].message.content
|
132 |
|
133 |
# Append the response to memory
|
@@ -135,35 +129,32 @@ def rag_query(query):
|
|
135 |
|
136 |
return response
|
137 |
|
138 |
-
def process_feedback(query, response, feedback):
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
|
151 |
# Streamlit interface
|
152 |
|
153 |
-
st.title("
|
154 |
st.markdown("***")
|
155 |
st.info('''
|
156 |
-
|
157 |
-
|
158 |
-
To push data, click on Store Document.
|
159 |
-
''')
|
160 |
|
161 |
-
col1, col2 = st.columns(2)
|
162 |
|
163 |
-
with col1:
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
|
168 |
|
169 |
st.markdown("<div style='text-align:center;'></div>", unsafe_allow_html=True)
|
|
|
2 |
import sys
|
3 |
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import streamlit as st
|
6 |
from huggingface_hub import InferenceClient
|
7 |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate
|
|
|
113 |
]
|
114 |
|
115 |
# Get the response from the client
|
116 |
+
response_content = client.chat_completion(messages=messages, max_tokens=1024, stream=False)
|
117 |
|
118 |
# Process the response content
|
119 |
response = response_content.choices[0].message.content.split("Answer:")[-1].strip()
|
|
|
121 |
# If the response is empty or very short, or if no relevant documents were found, use the LLM's default knowledge
|
122 |
if not context or len(response.split()) < 35 or not retrieved_docs:
|
123 |
messages = [{"role": "user", "content": query}]
|
124 |
+
response_content = client.chat_completion(messages=messages, max_tokens=1024, stream=False)
|
125 |
response = response_content.choices[0].message.content
|
126 |
|
127 |
# Append the response to memory
|
|
|
129 |
|
130 |
return response
|
131 |
|
132 |
+
# def process_feedback(query, response, feedback):
|
133 |
+
# # st.write(f"Feedback received: {'👍' if feedback else '👎'} for query: {query}")
|
134 |
+
# if feedback:
|
135 |
+
# # If thumbs up, store the response in memory buffer
|
136 |
+
# memory.chat_memory.add_ai_message(response)
|
137 |
+
# else:
|
138 |
+
# # If thumbs down, remove the response from memory buffer and regenerate the response
|
139 |
+
# # memory.chat_memory.messages = [msg for msg in memory.chat_memory.messages if msg.get("content") != response]
|
140 |
+
# new_query=f"{query}. Give better response"
|
141 |
+
# new_response = rag_query(new_query)
|
142 |
+
# st.markdown(new_response)
|
143 |
+
# memory.chat_memory.add_ai_message(new_response)
|
144 |
|
145 |
# Streamlit interface
|
146 |
|
147 |
+
st.title("Chào mừng bạn đã đến với MBAL Chatbot")
|
148 |
st.markdown("***")
|
149 |
st.info('''
|
150 |
+
Tôi sẽ giải đáp các thắc mắc của bạn liên quan đến các sản phẩm bảo hiểm nhân thọ của MB Ageas Life''')
|
|
|
|
|
|
|
151 |
|
152 |
+
# col1, col2 = st.columns(2)
|
153 |
|
154 |
+
# with col1:
|
155 |
+
# chat = st.button("Chat")
|
156 |
+
# if chat:
|
157 |
+
st.switch_page("pages/chatbot.py")
|
158 |
|
159 |
|
160 |
st.markdown("<div style='text-align:center;'></div>", unsafe_allow_html=True)
|