ngcanh commited on
Commit
a0a434e
·
verified ·
1 Parent(s): 1112aa6

Delete pages

Browse files
Files changed (2) hide show
  1. pages/chatbot.py +0 -47
  2. pages/management.py +0 -68
pages/chatbot.py DELETED
@@ -1,47 +0,0 @@
1
- import streamlit as st
2
- from app import rag_query, memory, process_feedback
3
-
4
- st.title("🛡️ RAG Chatbot MB Ageas Life 🛡️")
5
-
6
- # Initialize session history
7
- if "messages" not in st.session_state:
8
- st.session_state.messages = []
9
-
10
- # Hiển thị lại tin nhắn cũ
11
- for i, message in enumerate(st.session_state.messages):
12
- with st.chat_message(message["role"]):
13
- st.markdown(message["content"])
14
- if message["role"] == "assistant":
15
- col1, col2 = st.columns([1, 15])
16
- with col1:
17
- if st.button("👍", key=f"thumbs_up_{i}"):
18
- process_feedback(st.session_state.messages[i-1]["content"], message["content"], True)
19
- with col2:
20
- if st.button("👎", key=f"thumbs_down_{i}"):
21
- process_feedback(st.session_state.messages[i-1]["content"], message["content"], False)
22
-
23
- # Nhận input người dùng
24
- if prompt := st.chat_input("Ask me any question related to MBAL"):
25
- # Hiển thị tin nhắn người dùng
26
- st.chat_message("user").markdown(prompt)
27
- st.session_state.messages.append({"role": "user", "content": prompt})
28
- memory.chat_memory.add_user_message(prompt)
29
-
30
- # Gọi hàm RAG để trả lời
31
- response = rag_query(prompt)
32
-
33
- # Hiển thị tin nhắn chatbot
34
- with st.chat_message("assistant"):
35
- st.markdown(response)
36
- st.session_state.messages.append({"role": "assistant", "content": response})
37
- memory.chat_memory.add_ai_message(response)
38
-
39
- st.rerun()
40
-
41
- # Sidebar
42
- # with st.sidebar:
43
- # st.header("Lựa chọn khác")
44
- # if st.button("Xóa lịch sử chat"):
45
- # st.session_state.messages = []
46
- # memory.clear()
47
- # st.rerun()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pages/management.py DELETED
@@ -1,68 +0,0 @@
1
- import os
2
- import streamlit as st
3
- from langchain.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader
4
- from langchain.text_splitter import CharacterTextSplitter
5
- from app import vectorstore
6
-
7
-
8
- st.title("Document Management")
9
-
10
- # File uploader
11
- uploaded_file = st.file_uploader("Choose a file", type=['txt', 'pdf', 'docx'])
12
-
13
- if uploaded_file is not None:
14
- # Create a temporary directory to store the uploaded file
15
- temp_dir = "temp_uploads"
16
- os.makedirs(temp_dir, exist_ok=True)
17
- file_path = os.path.join(temp_dir, uploaded_file.name)
18
-
19
- # Save the uploaded file temporarily
20
- with open(file_path, "wb") as f:
21
- f.write(uploaded_file.getbuffer())
22
-
23
- st.success(f"File {uploaded_file.name} successfully uploaded!")
24
-
25
- # Process the uploaded file
26
- if st.button("Process Document"):
27
- with st.spinner("Processing document..."):
28
- try:
29
- # Load the document based on file type
30
- if uploaded_file.type == "application/pdf":
31
- loader = PyPDFLoader(file_path)
32
- elif uploaded_file.type == "text/plain":
33
- loader = TextLoader(file_path)
34
- else:
35
- st.error("Unsupported file type.")
36
- st.stop()
37
-
38
- documents = loader.load()
39
-
40
- # Split the document into chunks
41
- text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=150)
42
- texts = text_splitter.split_documents(documents)
43
-
44
- # Add the chunks to the vectorstore
45
- vectorstore.add_documents(texts)
46
-
47
- st.success(f"Document processed and added to the knowledge base!")
48
- except Exception as e:
49
- st.error(f"An error occurred: {e}")
50
-
51
- # Clean up: remove the temporary file
52
- os.remove(file_path)
53
-
54
- # Display current documents in the knowledge base
55
- # st.subheader("Current Documents in Knowledge Base")
56
- # # This is a placeholder. You'll need to implement a method to retrieve and display
57
- # # the list of documents currently in your Chroma database.
58
- # st.write("Placeholder for document list")
59
-
60
- # # Option to clear the entire knowledge base
61
- # if st.button("Clear Knowledge Base"):
62
- # if st.sidebar.checkbox("Are you sure you want to clear the entire knowledge base? This action cannot be undone."):
63
- # try:
64
- # # Clear the Chroma database
65
- # vectorstore.delete()
66
- # st.success("Knowledge base cleared!")
67
- # except Exception as e:
68
- # st.error(f"An error occurred: {e}")