import streamlit as st from langchain.llms import HuggingFacePipeline from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.prompts.prompt import PromptTemplate from langchain.embeddings import HuggingFaceEmbeddings, OpenAIEmbeddings from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline from langchain.schema import Document from langchain_community.llms import HuggingFaceEndpoint from langchain.vectorstores import Chroma from transformers import TextStreamer from langchain.llms import HuggingFacePipeline from langchain.prompts import ChatPromptTemplate from langchain.llms import HuggingFaceHub import os import pandas as pd from langchain.vectorstores import FAISS import subprocess from langchain_community.llms import HuggingFaceHub import pandas as pd # Configuración del modelo MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" model_name = "google/gemma-2-2b" TOKEN=os.getenv('HF_TOKEN') subprocess.run(["huggingface-cli", "login", "--token", TOKEN, "--add-to-git-credential"]) ###### # set this key as an environment variable os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"] # Initialize tokenizer @st.cache_resource def load_model(): # MODEL_NAME= "lmsys/vicuna-7b-v1.5" MODEL_NAME = "google/gemma-2b-it" model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, quantization_config=nf4_config, # add config torch_dtype=torch.bfloat16, # save memory using float16 # low_cpu_mem_usage=True, token=get_hg_token(), ).to("cuda") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model_pipeline = pipeline( 'text-generation', model=model, tokenizer=tokenizer, max_new_tokens=1024, # output token device_map="auto" # auto allocate GPU if available ) return HuggingFacePipeline(pipeline=model_pipeline) # Initialize embeddings @st.cache_resource def load_embeddings(): embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/bkai-foundation-models/vietnamese-bi-encoder') # embeddings = OpenAIEmbeddings() return embeddings # Chroma Vector store @st.cache_resource def setup_vector(): chunks = [] df = pd.read_excel(r"chunk_metadata_template.xlsx") for _, row in df.iterrows(): chunk_with_metadata = Document( page_content=row['page_content'], metadata={ 'chunk_id': row['chunk_id'], 'document_title': row['document_title'], } ) chunks.append(chunk_with_metadata) embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/bkai-foundation-models/vietnamese-bi-encoder') return Chroma.from_documents(chunks, embedding=embeddings) # Set up chain def setup_conversation_chain(): llm = load_model() vector = setup_vector() memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) template = """Bạn là một chuyên viên tư vấn cho khách hàng về sản phẩm bảo hiểm của công ty MB Ageas Life tại Việt Nam. Hãy trả lời chuyên nghiệp, chính xác, cung cấp thông tin trước rồi hỏi câu tiếp theo. Tất cả các thông tin cung cấp đều trong phạm vi MBAL. Khi có đủ thông tin khách hàng thì mới mời khách hàng đăng ký để nhận tư vấn trên https://www.mbageas.life/ {context} Câu hỏi: {question} Trả lời:""" # PROMPT = ChatPromptTemplate.from_template(template=template) # chain = ConversationalRetrievalChain.from_llm( # llm=llm, # retriever=vector.as_retriever(search_kwargs={'k': 5}), # memory=memory, # combine_docs_chain_kwargs={"prompt": PROMPT} # # condense_question_prompt=CUSTOM_QUESTION_PROMPT ) chain = ( {"context": vector.as_retriever(search_kwargs={'k': 5}) | format_docs, "question": RunnablePassthrough()} | prompt | llm | parser ) return chain # Streamlit def main(): st.title("🛡️ MBAL Chatbot 🛡️") # Inicializar la cadena de conversación if 'conversation_chain' not in st.session_state: st.session_state.conversation_chain = setup_conversation_chain() # Mostrar mensajes del chat if 'messages' not in st.session_state: st.session_state.messages = [] for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Campo de entrada para el usuario if prompt := st.chat_input("Bạn cần tư vấn về điều gì? Hãy chia sẻ nhu cầu và thông tin của bạn nhé!"): st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.markdown(prompt) with st.chat_message("assistant"): message_placeholder = st.empty() full_response = "" # Generar respuesta response = st.session_state.conversation_chain({"question": prompt, "chat_history": []}) full_response = response['answer'] # full_response = response.get("answer", "No response generated.") message_placeholder.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) # if __name__ == "__main__": main()