File size: 3,368 Bytes
d8aac59
 
 
 
 
 
 
3c7d3dd
d8aac59
 
 
 
 
dec77f8
d8aac59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c7d3dd
 
d8aac59
 
 
 
 
 
 
 
 
 
 
 
 
3c7d3dd
d8aac59
 
 
3c7d3dd
d8aac59
 
3c7d3dd
d8aac59
 
3c7d3dd
d8aac59
 
 
3c7d3dd
d8aac59
 
 
 
 
 
3c7d3dd
d8aac59
 
3c7d3dd
 
d8aac59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
import os
from langchain.memory import ConversationBufferWindowMemory
from langchain.chains import ConversationalRetrievalChain
import time
import streamlit as st
import os

st.set_page_config(page_title="MBAL CHATBOT")
col1, col2, col3 = st.columns([1,2,1])

st.sidebar.title("Welcome to MBAL Chatbot")
st.markdown(
    """
    <style>
div.stButton > button:first-child {
    background-color: #ffd0d0;
}

div.stButton > button:active {
    background-color: #ff6262;
}

.st-emotion-cache-6qob1r {
    position: relative;
    height: 100%;
    width: 100%;
    background-color: black;
    overflow: overlay;
}

   div[data-testid="stStatusWidget"] div button {
        display: none;
        }

    .reportview-container {
            margin-top: -2em;
        }
        #MainMenu {visibility: hidden;}
        .stDeployButton {display:none;}
        footer {visibility: hidden;}
        #stDecoration {display:none;}
    button[title="View fullscreen"]{
    visibility: hidden;}
        </style>
""",
    unsafe_allow_html=True,
)

def reset_conversation():
    st.session_state.messages = []
    st.session_state.memory.clear()

if "messages" not in st.session_state:
    st.session_state.messages = []

if "memory" not in st.session_state:
    st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history",return_messages=True)

embeddings = HuggingFaceEmbeddings(model_name="bkai-foundation-models/vietnamese-bi-encoder", model_kwargs={"trust_remote_code": True})
db = FAISS.load_local("mbal_faiss_db", embeddings,allow_dangerous_deserialization= True)
db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4})

prompt_template = """<s>
 {context}
CHAT HISTORY: {chat_history}[/INST]
ASSISTANT:
</s>
"""

prompt = PromptTemplate(template=prompt_template,
                        input_variables=['question', 'context', 'chat_history'])


llm = ChatGroq(temperature = 0.5,groq_api_key=os.environ["GROQ_API_KEY"],model_name="llama3-7b")

# Create a conversational chain using only your database retriever
qa = ConversationalRetrievalChain.from_llm(
    llm=llm,
    memory=st.session_state.memory,
    retriever=db_retriever,
    combine_docs_chain_kwargs={'prompt': prompt}
)

for message in st.session_state.messages:
    with st.chat_message(message.get("role")):
        st.write(message.get("content"))

input_prompt = st.chat_input("Say something")

if input_prompt:
    with st.chat_message("user"):
        st.write(input_prompt)

    st.session_state.messages.append({"role":"user","content":input_prompt})

    with st.chat_message("assistant"):
        with st.status("Lifting data, one bit at a time 💡...",expanded=True):
            result = qa.invoke(input=input_prompt)

            message_placeholder = st.empty()

            full_response = "⚠️ **_Note: Information provided may be inaccurate._** \n\n\n"
        for chunk in result["answer"]:
            full_response+=chunk
            time.sleep(0.02)

            message_placeholder.markdown(full_response+" ▌")
        st.button('Reset All Chat 🗑️', on_click=reset_conversation)

    st.session_state.messages.append({"role":"assistant","content":result["answer"]})