ngcanh's picture
Update app.py
9c8ee9a verified
raw
history blame
5.5 kB
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# DATABASES = {
# 'default': {
# 'ENGINE': 'django.db.backends.sqlite3',
# 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
# }
# }
import streamlit as st
from huggingface_hub import InferenceClient
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
import chromadb
from langchain.memory import ConversationBufferMemory
import pandas as pd
from langchain.schema import Document
# Set page config
st.set_page_config(page_title="MBAL Chatbot", page_icon="🛡️", layout="wide")
# Set your Hugging Face token here
HF_TOKEN = st.secrets["HF_TOKEN"]
@st.cache_resource
def init_chroma():
persist_directory = "chroma_db"
chroma_client = chromadb.PersistentClient(path=persist_directory)
chroma_collection = chroma_client.get_or_create_collection("my_collection")
return chroma_client, chroma_collection
@st.cache_resource
def init_vectorstore():
persist_directory = "chroma_db"
embeddings = HuggingFaceEmbeddings()
vectorstore = Chroma(persist_directory=persist_directory, embedding_function=embeddings, collection_name="my_collection")
return vectorstore
@st.cache_resource
def setup_vector():
# Đọc dữ liệu từ file Excel
df = pd.read_excel("chunk_metadata_template (1).xlsx")
chunks = []
# Tạo danh sách các Document có metadata
for _, row in df.iterrows():
chunk_with_metadata = Document(
page_content=row['page_content'],
metadata={
'chunk_id': row['chunk_id'],
'document_title': row['document_title'],
'topic': row['topic'],
'access': row['access']
}
)
chunks.append(chunk_with_metadata)
# Khởi tạo embedding
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
# Khởi tạo hoặc ghi vào vectorstore đã tồn tại
persist_directory = "chroma_db"
collection_name = "my_collection"
# Tạo vectorstore từ dữ liệu và ghi vào Chroma
vectorstore = Chroma.from_documents(
documents=chunks,
embedding=embeddings,
persist_directory=persist_directory,
collection_name=collection_name
)
# Ghi xuống đĩa để đảm bảo dữ liệu được lưu
vectorstore.persist()
return vectorstore
# Initialize components
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3", token=HF_TOKEN)
chroma_client, chroma_collection = init_chroma()
init_vectorstore()
vectorstore = setup_vector()
# Initialize memory buffer
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
def rag_query(query):
# Lấy tài liệu liên quan
retrieved_docs = vectorstore.similarity_search(query, k=5)
context = "\n".join([doc.page_content for doc in retrieved_docs]) if retrieved_docs else ""
# Lấy tương tác cũ
past_interactions = memory.load_memory_variables({})[memory.memory_key]
context_with_memory = f"{context}\n\nConversation History:\n{past_interactions}"
# Chuẩn bị prompt
messages = [
{
"role": "user",
"content": f"""You are a consultant advising clients on insurance products from MB Ageas Life in Vietnam. Please respond professionally and accurately, and suggest suitable products by asking a few questions about the customer's needs. All information provided must remain within the scope of MBAL. Invite the customer to register for a more detailed consultation at https://www.mbageas.life/
{context_with_memory}
Question: {query}
Answer:"""
}
]
response_content = client.chat_completion(messages=messages, max_tokens=1024, stream=False)
response = response_content.choices[0].message.content.split("Answer:")[-1].strip()
return response
def process_feedback(query, response, feedback):
# st.write(f"Feedback received: {'👍' if feedback else '👎'} for query: {query}")
if feedback:
# If thumbs up, store the response in memory buffer
memory.chat_memory.add_ai_message(response)
else:
# If thumbs down, remove the response from memory buffer and regenerate the response
# memory.chat_memory.messages = [msg for msg in memory.chat_memory.messages if msg.get("content") != response]
new_query=f"{query}. Tạo câu trả lời đúng với câu hỏi"
new_response = rag_query(new_query)
st.markdown(new_response)
memory.chat_memory.add_ai_message(new_response)
# Streamlit interface
st.title("Chào mừng bạn đã đến với MBAL Chatbot")
st.markdown("***")
st.info('''
Tôi sẽ giải đáp các thắc mắc của bạn liên quan đến các sản phẩm bảo hiểm nhân thọ của MB Ageas Life''')
col1, col2 = st.columns(2)
with col1:
chat = st.button("Chat")
if chat:
st.switch_page("pages/chatbot.py")
with col2:
rag = st.button("Store Document")
if rag:
st.switch_page("pages/management.py")
st.markdown("<div style='text-align:center;'></div>", unsafe_allow_html=True)