ngcanh commited on
Commit
2e81896
·
verified ·
1 Parent(s): 9c0ff61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -7,7 +7,7 @@ from langchain.chains import ConversationalRetrievalChain
7
  import time
8
  import streamlit as st
9
  import os
10
-
11
  st.set_page_config(page_title="MBAL CHATBOT")
12
  col1, col2, col3 = st.columns([1,2,1])
13
 
@@ -63,8 +63,9 @@ embeddings = HuggingFaceEmbeddings(model_name="bkai-foundation-models/vietnamese
63
  db = FAISS.load_local("mbal_faiss_db", embeddings,allow_dangerous_deserialization= True)
64
  db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4})
65
 
66
- prompt_template = """<s>
67
- {context}
 
68
  CHAT HISTORY: {chat_history}[/INST]
69
  ASSISTANT:
70
  </s>
@@ -74,7 +75,7 @@ prompt = PromptTemplate(template=prompt_template,
74
  input_variables=['question', 'context', 'chat_history'])
75
 
76
 
77
- llm = ChatGroq(temperature = 0.5,groq_api_key=os.environ["GROQ_API_KEY"],model_name="llama3-7b")
78
 
79
  # Create a conversational chain using only your database retriever
80
  qa = ConversationalRetrievalChain.from_llm(
 
7
  import time
8
  import streamlit as st
9
  import os
10
+ from langchain.chat_models import ChatOpenAI
11
  st.set_page_config(page_title="MBAL CHATBOT")
12
  col1, col2, col3 = st.columns([1,2,1])
13
 
 
63
  db = FAISS.load_local("mbal_faiss_db", embeddings,allow_dangerous_deserialization= True)
64
  db_retriever = db.as_retriever(search_type="similarity",search_kwargs={"k": 4})
65
 
66
+ prompt_template = """<s>[INST] Bạn là một chuyên viên tư vấn cho khách hàng về sản phẩm bảo hiểm của công ty MB Ageas Life tại Việt Nam. Hãy trả lời chuyên nghiệp, chính xác, cung cấp thông tin trước rồi hỏi câu tiếp theo. Tất cả các thông tin cung cấp đều trong phạm vi MBAL. Khi có đủ thông tin khách hàng thì mới mời khách hàng đăng ký để nhận tư vấn trên https://www.mbageas.life/
67
+ {context}
68
+ QUESTION: {question}
69
  CHAT HISTORY: {chat_history}[/INST]
70
  ASSISTANT:
71
  </s>
 
75
  input_variables=['question', 'context', 'chat_history'])
76
 
77
 
78
+ llm = ChatOpenAI(model="gpt-4o")
79
 
80
  # Create a conversational chain using only your database retriever
81
  qa = ConversationalRetrievalChain.from_llm(