nharshavardhana commited on
Commit
3bd3dc8
Β·
1 Parent(s): 71d6ade
Files changed (2) hide show
  1. app.py +349 -0
  2. requirements.txt +23 -0
app.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests
2
+ import json
3
+ import os
4
+ from collections import Counter
5
+ from langgraph.graph import StateGraph, END
6
+ from typing import TypedDict, Annotated
7
+ import operator
8
+ from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage, ToolMessage, AIMessage
9
+ from langchain_community.tools.tavily_search import TavilySearchResults
10
+ from langchain.chat_models import init_chat_model
11
+ import gradio as gr
12
+ from langchain.schema import HumanMessage
13
+ from langchain.tools import tool
14
+ import ebooklib
15
+ from ebooklib import epub, ITEM_DOCUMENT
16
+ from bs4 import BeautifulSoup
17
+ import matplotlib.pyplot as plt
18
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
19
+ import numpy as np
20
+ import tempfile
21
+ from typing import List, Dict
22
+ import seaborn as sns
23
+ import re
24
+ from sklearn.feature_extraction.text import TfidfVectorizer
25
+ import nltk
26
+ from nltk.corpus import stopwords
27
+
28
+ MISTRAL_API_KEY = os.getenv("MISTRAL_API_KEY")
29
+
30
+ def extract_clean_chapters(epub_path):
31
+ skip_titles = ['about the author', 'acknowledgment', 'acknowledgements',
32
+ 'copyright', 'table of contents', 'dedication', 'preface', 'foreword']
33
+ book = epub.read_epub(epub_path)
34
+ chapters = {}
35
+
36
+ chapter_index = 1
37
+ for item in book.get_items():
38
+ if item.get_type() == ebooklib.ITEM_DOCUMENT:
39
+ soup = BeautifulSoup(item.get_content(), 'html.parser')
40
+ text = soup.get_text().strip()
41
+ title_tag = soup.title.string if soup.title else None
42
+ title = title_tag.strip() if title_tag else f"Chapter {chapter_index}"
43
+
44
+ title_lower = title.lower()
45
+ if any(skip in title_lower for skip in skip_titles):
46
+ continue
47
+ if len(text.split()) < 300:
48
+ continue
49
+
50
+ chapters[title] = text
51
+ chapter_index += 1
52
+
53
+ return chapters
54
+
55
+ def plot_word_count(chapter_word_counts):
56
+ titles = list(chapter_word_counts.keys())
57
+ word_counts = list(chapter_word_counts.values())
58
+
59
+ fig, ax = plt.subplots(figsize=(12, 6))
60
+ ax.bar(range(len(titles)), word_counts, color='skyblue')
61
+ ax.set_xticks(range(len(titles)))
62
+ ax.set_xticklabels([f"{i+1}" for i in range(len(titles))], rotation=90)
63
+ ax.set_xlabel("Chapters")
64
+ ax.set_ylabel("Word Count")
65
+ ax.set_title("Word Count per Chapter")
66
+ plt.tight_layout()
67
+
68
+ return fig # Return the figure directly
69
+
70
+ @tool
71
+ def get_chapter_wordcount_plot(book_path: str) -> str:
72
+ """
73
+ Extracts chapter-wise word counts from an EPUB book and plots a bar chart.
74
+
75
+ Args:
76
+ book_path: Path to the .epub file.
77
+
78
+ Returns:
79
+ A dictionary with total chapter count, average word count, and plot image path.
80
+ """
81
+ chapters = extract_clean_chapters(book_path)
82
+ chapter_word_counts = {title: len(text.split()) for title, text in chapters.items()}
83
+
84
+ avg_words = sum(chapter_word_counts.values()) / len(chapter_word_counts) if chapter_word_counts else 0
85
+ fig = plot_word_count(chapter_word_counts)
86
+
87
+ image_path = "/tmp/wordcount_plot.png"
88
+ fig.savefig(image_path)
89
+ plt.close(fig) # free memory
90
+ return image_path
91
+
92
+
93
+ # Load sentiment model + tokenizer with correct label mapping
94
+ model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
95
+ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
96
+ model.config.id2label = {
97
+ 0: "negative",
98
+ 1: "neutral",
99
+ 2: "positive"
100
+ }
101
+
102
+ sentiment_pipeline = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
103
+
104
+ def extract_epub_text(epub_path: str) -> str:
105
+ book = epub.read_epub(epub_path)
106
+ text = []
107
+ for item in book.get_items():
108
+ if item.get_type() == ITEM_DOCUMENT:
109
+ soup = BeautifulSoup(item.get_content(), "html.parser")
110
+ text.append(soup.get_text())
111
+ return ' '.join(' '.join(text).split())
112
+
113
+ def extract_text(file_path: str) -> str:
114
+ if file_path.endswith(".epub"):
115
+ return extract_epub_text(file_path)
116
+ else:
117
+ with open(file_path, "r", encoding="utf-8") as f:
118
+ return ' '.join(f.read().split())
119
+
120
+ def chunk_text(text: str, chunk_size: int = 1000) -> List[str]:
121
+ words = text.split()
122
+ return [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
123
+
124
+ def analyze_chunks(chunks: List[str]) -> List[float]:
125
+ sentiment_scores = []
126
+ for i, chunk in enumerate(chunks): # analyze all chunks
127
+ result = sentiment_pipeline(chunk[:512])[0]
128
+ # print(f"Chunk {i}: {result}") # useful for debugging
129
+ label = result['label'].lower()
130
+ confidence = result['score']
131
+ if label == "positive":
132
+ sentiment_scores.append(confidence)
133
+ elif label == "negative":
134
+ sentiment_scores.append(-confidence)
135
+ else: # neutral
136
+ sentiment_scores.append(0.0)
137
+ return sentiment_scores
138
+
139
+ def smooth(scores: List[float], window: int = 3) -> List[float]:
140
+ return np.convolve(scores, np.ones(window)/window, mode='same')
141
+
142
+ def plot_sentiment_arc(scores: List[float], title="Sentiment Arc"):
143
+ fig, ax = plt.subplots(figsize=(10, 4))
144
+ ax.plot(scores, color='teal', linewidth=2)
145
+ ax.set_title(title)
146
+ ax.set_xlabel("Book Position (Chunks)")
147
+ ax.set_ylabel("Sentiment Score")
148
+ ax.grid(True)
149
+ plt.tight_layout()
150
+ return fig # return the matplotlib figure
151
+
152
+ @tool
153
+ def get_sentiment_arc(book_path: str) -> str:
154
+ """
155
+ Generates a sentiment arc from a .txt or .epub book file.
156
+
157
+ Args:
158
+ book_path: Path to the .txt or .epub book file.
159
+
160
+ Returns:
161
+ A dictionary with chunk count, average sentiment score, and plot path.
162
+ """
163
+ text = extract_text(book_path)
164
+ chunks = chunk_text(text)
165
+ raw_scores = analyze_chunks(chunks)
166
+ smoothed_scores = smooth(raw_scores)
167
+
168
+ fig = plot_sentiment_arc(smoothed_scores)
169
+
170
+ image_path = "/tmp/sentiment_arc.png"
171
+ fig.savefig(image_path)
172
+ plt.close(fig) # free memory
173
+ return image_path
174
+
175
+
176
+ nltk.download('stopwords')
177
+ STOPWORDS = set(stopwords.words('english'))
178
+
179
+ def extract_epub_chapters(epub_path: str) -> List[str]:
180
+ book = epub.read_epub(epub_path)
181
+ chapters = []
182
+ for item in book.get_items():
183
+ if item.get_type() == ITEM_DOCUMENT:
184
+ soup = BeautifulSoup(item.get_content(), "html.parser")
185
+ text = soup.get_text()
186
+ cleaned = re.sub(r'\s+', ' ', text.strip())
187
+ if len(cleaned.split()) > 50:
188
+ chapters.append(cleaned)
189
+ return chapters
190
+
191
+ def extract_chapters(file_path: str) -> List[str]:
192
+ if file_path.endswith(".epub"):
193
+ return extract_epub_chapters(file_path)
194
+ else:
195
+ with open(file_path, "r", encoding="utf-8") as f:
196
+ full_text = f.read()
197
+ split_text = re.split(r'\n\s*(Chapter|CHAPTER|chapter)\s+\d+', full_text)
198
+ return [t.strip() for t in split_text if len(t.split()) > 50]
199
+
200
+ def clean_text(text: str) -> str:
201
+ text = text.lower()
202
+ text = re.sub(r'[^a-z\s]', '', text)
203
+ return ' '.join([w for w in text.split() if w not in STOPWORDS])
204
+
205
+ def extract_theme_words(chapters: List[str], top_n: int = 10) -> List[str]:
206
+ cleaned = [clean_text(c) for c in chapters]
207
+ vectorizer = TfidfVectorizer(max_features=1000)
208
+ tfidf_matrix = vectorizer.fit_transform(cleaned)
209
+ summed_scores = np.asarray(tfidf_matrix.sum(axis=0)).flatten()
210
+ word_scores = list(zip(vectorizer.get_feature_names_out(), summed_scores))
211
+ top_words = sorted(word_scores, key=lambda x: x[1], reverse=True)[:top_n]
212
+ return [w for w, _ in top_words]
213
+
214
+ def compute_normalized_frequencies(chapters: List[str], theme_words: List[str]) -> List[Dict[str, float]]:
215
+ freq_matrix = []
216
+ for chap in chapters:
217
+ tokens = clean_text(chap).split()
218
+ total = len(tokens)
219
+ freqs = {w: tokens.count(w) / total for w in theme_words}
220
+ freq_matrix.append(freqs)
221
+ return freq_matrix
222
+
223
+ def plot_heatmap(freq_matrix: List[Dict[str, float]], theme_words: List[str]) -> str:
224
+ data = np.array([[chapter[word] for word in theme_words] for chapter in freq_matrix])
225
+ fig, ax = plt.subplots(figsize=(15, 12), dpi=100)
226
+ sns.heatmap(data, annot=True, cmap='viridis',
227
+ xticklabels=theme_words,
228
+ yticklabels=[f"C{i+1}" for i in range(len(freq_matrix))],
229
+ ax=ax)
230
+
231
+ ax.set_xlabel("Theme Words")
232
+ ax.set_ylabel("Chapters")
233
+ ax.set_title("Word Frequency Heatmap")
234
+ plt.tight_layout()
235
+
236
+ return fig # return the matplotlib figure
237
+
238
+ @tool
239
+ def get_word_frequency_heatmap(book_path: str, top_n_words: int = 10) -> str:
240
+ """
241
+ Generates a word frequency heatmap from a .txt or .epub book.
242
+
243
+ Args:
244
+ book_path: Path to the .txt or .epub book file.
245
+ top_n_words: Number of top theme words to extract via TF-IDF.
246
+
247
+ Returns:
248
+ A dictionary with chapter count, theme words, and heatmap image path.
249
+ """
250
+ chapters = extract_chapters(book_path)
251
+ theme_words = extract_theme_words(chapters, top_n=top_n_words)
252
+ freq_matrix = compute_normalized_frequencies(chapters, theme_words)
253
+ fig = plot_heatmap(freq_matrix, theme_words)
254
+
255
+ image_path = "/tmp/word_freq_heatmap.png"
256
+ fig.savefig(image_path)
257
+ plt.close(fig) # free memory
258
+ return image_path
259
+
260
+
261
+ class AgentState(TypedDict):
262
+ messages: Annotated[list[AnyMessage], operator.add]
263
+
264
+
265
+ class Agent:
266
+
267
+ def __init__(self, model, tools, system=""):
268
+ self.system = system
269
+ graph = StateGraph(AgentState)
270
+ graph.add_node("llm", self.call_mistral_ai)
271
+ graph.add_node("action", self.take_action)
272
+ graph.add_node("final", self.final_answer)
273
+ graph.add_conditional_edges(
274
+ "llm",
275
+ self.exists_action,
276
+ {True: "action", False: END}
277
+ )
278
+ graph.add_edge("action", "final") # πŸ†•
279
+ graph.add_edge("final", END) # πŸ†•
280
+ graph.set_entry_point("llm")
281
+ self.graph = graph.compile()
282
+ self.tools = {t.name: t for t in tools}
283
+ self.model = model.bind_tools(tools)
284
+
285
+ def exists_action(self, state: AgentState):
286
+ result = state['messages'][-1]
287
+ return len(result.tool_calls) > 0
288
+
289
+ def call_mistral_ai(self, state: AgentState):
290
+ messages = state['messages']
291
+ if self.system:
292
+ messages = [SystemMessage(content=self.system)] + messages
293
+ message = self.model.invoke(messages)
294
+ return {'messages': [message]}
295
+
296
+ def take_action(self, state: AgentState):
297
+ tool_calls = state['messages'][-1].tool_calls
298
+ results = []
299
+ for t in tool_calls:
300
+ print(f"Calling: {t}")
301
+ if not t['name'] in self.tools: # check for bad tool name from LLM
302
+ print("\n ....bad tool name....")
303
+ result = "bad tool name, retry" # instruct LLM to retry if bad
304
+ else:
305
+ result = self.tools[t['name']].invoke(t['args'])
306
+ results.append(ToolMessage(tool_call_id=t['id'], name=t['name'], content=str(result)))
307
+ return {'messages': results}
308
+
309
+ def final_answer(self, state: AgentState):
310
+ """Return the final tool output cleanly."""
311
+ return {"messages": [AIMessage(content=state['messages'][-1].content.strip())]}
312
+
313
+
314
+
315
+ prompt = """You are a reading Assistant. Your task is to help users analyze the novel, books, text.
316
+
317
+ Use the available tools to get overall summary of the book, novel. You can make multiple lookups if necessary, either together or in sequence.
318
+
319
+ Your goal is to ensure help the user.
320
+
321
+ """
322
+
323
+ model = init_chat_model("mistral-large-latest", model_provider="mistralai")
324
+ abot = Agent(model, [get_chapter_wordcount_plot, get_word_frequency_heatmap, get_sentiment_arc], system=prompt)
325
+
326
+
327
+ def query_agent(epub_file, prompt):
328
+ file_path = epub_file.name
329
+ user_input = f"{file_path} {prompt}"
330
+ messages = [HumanMessage(content=user_input)]
331
+
332
+ result = abot.graph.invoke({"messages": messages})
333
+ final_output = result['messages'][-1].content.strip()
334
+
335
+ # If tool returned a file path to an image
336
+ if os.path.exists(final_output) and final_output.endswith(".png"):
337
+ return final_output
338
+ else:
339
+ return f"No plot image found. Raw response: {final_output}"
340
+
341
+ gr.Interface(
342
+ fn=query_agent,
343
+ inputs=[
344
+ gr.File(label="Upload EPUB", type="filepath"),
345
+ gr.Textbox(label="Prompt", placeholder="e.g., Generate word frequency heatmap.")
346
+ ],
347
+ outputs=gr.Image(label="Sentiment Arc or Heatmap", type="filepath"),
348
+ title="Book Analyzer"
349
+ ).launch(share=True)
requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Core dependencies
2
+ requests
3
+ jsonlib
4
+ numpy
5
+ matplotlib
6
+ seaborn
7
+ scikit-learn
8
+ beautifulsoup4
9
+ ebooklib
10
+ nltk
11
+ transformers
12
+ torch # Required for transformers models
13
+ gradio
14
+ langchain
15
+ langgraph
16
+ langchain-community
17
+ langchain-core
18
+ langchain_mistralai
19
+ tavily-python # for TavilySearchResults tool
20
+ typing-extensions
21
+ mistralai
22
+ # Specific versions for stability (optional, recommended)
23
+ # You can lock these later with pip freeze if needed