Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| import requests | |
| from bs4 import BeautifulSoup | |
| from sentence_transformers import SentenceTransformer, util | |
| from transformers import pipeline | |
| class URLValidator: | |
| """ | |
| A production-ready URL validation class that evaluates the credibility of a webpage | |
| using multiple factors: domain trust, content relevance, fact-checking, bias detection, and citations. | |
| """ | |
| def __init__(self): | |
| # SerpAPI Key | |
| # This api key is acquired from SerpAPI website. | |
| self.serpapi_key = os.getenv("SERPAPI_API_KEY") | |
| # Load models once to avoid redundant API calls | |
| self.similarity_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2') | |
| self.fake_news_classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection") | |
| self.sentiment_analyzer = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-sentiment") | |
| def fetch_page_content(self, url: str) -> str: | |
| """ Fetches and extracts text content from the given URL. """ | |
| try: | |
| response = requests.get(url, timeout=10) | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.text, "html.parser") | |
| return " ".join([p.text for p in soup.find_all("p")]) # Extract paragraph text | |
| except requests.RequestException: | |
| return "" # Fail gracefully by returning an empty string | |
| def get_domain_trust(self, url: str, content: str) -> int: | |
| """ Computes the domain trust score based on available data sources. """ | |
| trust_scores = [] | |
| # Hugging Face Fake News Detector | |
| if content: | |
| try: | |
| trust_scores.append(self.get_domain_trust_huggingface(content)) | |
| except: | |
| pass | |
| # Compute final score (average of available scores) | |
| return int(sum(trust_scores) / len(trust_scores)) if trust_scores else 50 | |
| def get_domain_trust_huggingface(self, content: str) -> int: | |
| """ Uses a Hugging Face fake news detection model to assess credibility. """ | |
| if not content: | |
| return 50 # Default score if no content available | |
| result = self.fake_news_classifier(content[:512])[0] # Process only first 512 characters | |
| return 100 if result["label"] == "REAL" else 30 if result["label"] == "FAKE" else 50 | |
| def compute_similarity_score(self, user_query: str, content: str) -> int: | |
| """ Computes semantic similarity between user query and page content. """ | |
| if not content: | |
| return 0 | |
| return int(util.pytorch_cos_sim(self.similarity_model.encode(user_query), self.similarity_model.encode(content)).item() * 100) | |
| def check_facts(self, content: str) -> int: | |
| """ Cross-checks extracted content with Google Fact Check API. """ | |
| if not content: | |
| return 50 | |
| api_url = f"https://toolbox.google.com/factcheck/api/v1/claimsearch?query={content[:200]}" | |
| try: | |
| response = requests.get(api_url) | |
| data = response.json() | |
| return 80 if "claims" in data and data["claims"] else 40 | |
| except: | |
| return 50 # Default uncertainty score | |
| def check_google_scholar(self, url: str) -> int: | |
| """ Checks Google Scholar citations using SerpAPI. """ | |
| serpapi_key = self.serpapi_key | |
| params = {"q": url, "engine": "google_scholar", "api_key": serpapi_key} | |
| try: | |
| response = requests.get("https://serpapi.com/search", params=params) | |
| data = response.json() | |
| return min(len(data.get("organic_results", [])) * 10, 100) # Normalize | |
| except: | |
| return 0 # Default to no citations | |
| def detect_bias(self, content: str) -> int: | |
| """ Uses NLP sentiment analysis to detect potential bias in content. """ | |
| if not content: | |
| return 50 | |
| sentiment_result = self.sentiment_analyzer(content[:512])[0] | |
| return 100 if sentiment_result["label"] == "POSITIVE" else 50 if sentiment_result["label"] == "NEUTRAL" else 30 | |
| def get_star_rating(self, score: float) -> tuple: | |
| """ Converts a score (0-100) into a 1-5 star rating. """ | |
| stars = max(1, min(5, round(score / 20))) # Normalize 100-scale to 5-star scale | |
| return stars, "⭐" * stars | |
| def generate_explanation(self, domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score) -> str: | |
| """ Generates a human-readable explanation for the score. """ | |
| reasons = [] | |
| if domain_trust < 50: | |
| reasons.append("The source has low domain authority.") | |
| if similarity_score < 50: | |
| reasons.append("The content is not highly relevant to your query.") | |
| if fact_check_score < 50: | |
| reasons.append("Limited fact-checking verification found.") | |
| if bias_score < 50: | |
| reasons.append("Potential bias detected in the content.") | |
| if citation_score < 30: | |
| reasons.append("Few citations found for this content.") | |
| return " ".join(reasons) if reasons else "This source is highly credible and relevant." | |
| def rate_url_validity(self, user_query: str, url: str) -> dict: | |
| """ Main function to evaluate the validity of a webpage. """ | |
| content = self.fetch_page_content(url) | |
| domain_trust = self.get_domain_trust(url, content) | |
| similarity_score = self.compute_similarity_score(user_query, content) | |
| fact_check_score = self.check_facts(content) | |
| bias_score = self.detect_bias(content) | |
| citation_score = self.check_google_scholar(url) | |
| final_score = ( | |
| (0.3 * domain_trust) + | |
| (0.3 * similarity_score) + | |
| (0.2 * fact_check_score) + | |
| (0.1 * bias_score) + | |
| (0.1 * citation_score) | |
| ) | |
| stars, icon = self.get_star_rating(final_score) | |
| explanation = self.generate_explanation(domain_trust, similarity_score, fact_check_score, bias_score, citation_score, final_score) | |
| return { | |
| "raw_score": { | |
| "Domain Trust": domain_trust, | |
| "Content Relevance": similarity_score, | |
| "Fact-Check Score": fact_check_score, | |
| "Bias Score": bias_score, | |
| "Citation Score": citation_score, | |
| "Final Validity Score": final_score | |
| }, | |
| "stars": { | |
| "score": stars, | |
| "icon": icon | |
| }, | |
| "explanation": explanation | |
| } | |
| st.write("# LEVEL1 TITLE: APP") | |
| st.write("this is my first app") | |
| # User input fields | |
| user_prompt = st.text_area("Enter your search query:", | |
| "I have just been on an international flight, can I come back home to hold my 1-month-old newborn?") | |
| url_to_check = st.text_input("Enter the URL to validate:", | |
| "https://www.mayoclinic.org/healthy-lifestyle/infant-and-toddler-health/expert-answers/air-travel-with-infant/faq-20058539") | |
| # Run validation when the button is clicked | |
| if st.button("Validate URL"): | |
| if not user_prompt.strip() or not url_to_check.strip(): | |
| st.warning("Please enter both a search query and a URL.") | |
| else: | |
| with st.spinner("Validating URL..."): | |
| # Instantiate the URLValidator class | |
| validator = URLValidator() | |
| result = validator.rate_url_validity(user_prompt, url_to_check) | |
| # Display results in JSON format | |
| st.subheader("Validation Results") | |
| st.json(result) |