import gradio as gr from sklearn.metrics.pairwise import cosine_similarity from sentence_transformers import SentenceTransformer from PIL import Image import cv2 import os import numpy as np def extract_face(im): prototxt_path = 'deploy.prototxt' caffemodel_path = 'weights.caffemodel' # Read the model cv2_model = cv2.dnn.readNetFromCaffe(prototxt_path, caffemodel_path) #pil_image = PIL.Image.open('image.jpg') image = cv2.cvtColor(np.array(im), cv2.COLOR_RGB2BGR) #image = cv2.imread(im) (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) cv2_model.setInput(blob) detections = cv2_model.forward() # Identify each face for i in range(0, detections.shape[2]): box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") confidence = detections[0, 0, i, 2] # If confidence > 0.5, save it as a separate file if (confidence > 0.5): frame = image[startY:endY, startX:endX] #PIL_image = Image.fromarray(frame) file_name = 'faces/' + str(np.random.randint(1,10)) + '_' + 'face.png' cv2.imwrite(file_name, frame) return file_name def predict(im1, im2,thresh,model_name): if not isinstance(im1,str): im1_face = im1 im2_face = im2 else: im1_face = Image.open(im1) im2_face = Image.open(im2) model = load_model(model_name) sim=cosine_similarity(model.encode([im1_face,im2_face]))[0][1] if sim > thresh: return round(sim,2), "SAME PERSON, UNLOCK PHONE" else: return round(sim,2), "DIFFERENT PEOPLE, DON'T UNLOCK" def load_model(model_name): model = SentenceTransformer(model_name) return model title = """

FaceID for Facial Recognition with Face Detector

""" models = ['clip-ViT-B-16','clip-ViT-B-32','clip-ViT-L-14'] twitter_link = """ [![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi) """ css = ''' h1#title { text-align: center; } ''' demo = gr.Blocks(css=css) with demo: gr.Markdown(title) gr.Markdown(twitter_link) model_options = gr.Dropdown(choices=models,label='Embedding Models',value=models[-1],show_label=True) thresh = gr.Slider(minimum=0.5,maximum=1,value=0.85,step=0.1,label='Confidence') with gr.Tabs(): with gr.TabItem("Face ID with No Face Detection"): with gr.Row(): with gr.Column(): nd_image_input_1 = gr.Image(label='Image 1',type='pil',source='webcam') nd_image_input_2 = gr.Image(label='Image 2',type='pil',source='webcam') with gr.Column(): sim = gr.Number(label="Similarity") msg = gr.Textbox(label="Message") nd_but = gr.Button('Verify') with gr.TabItem("Face ID with Face Detector"): with gr.Row(): with gr.Column(): fd_image_1 = gr.Image(label='Image 1',type='pil',source='webcam') fd_image_2 = gr.Image(label='Image 2',type='pil',source='webcam') with gr.Column(): face_1 = gr.Image(label='Face Detected 1',type='filepath') face_2 = gr.Image(label='Face Detected 2',type='filepath') fd_image_1.change(extract_face,fd_image_1,face_1) fd_image_2.change(extract_face,fd_image_2,face_2) with gr.Row(): with gr.Column(): sim_1 = gr.Number(label="Similarity") msg_1 = gr.Textbox(label="Message") fd_but = gr.Button('Verify') nd_but.click(predict,inputs=[nd_image_input_1,nd_image_input_2,thresh,model_options],outputs=[sim,msg],queue=True) fd_but.click(predict,inputs=[face_1,face_2,thresh,model_options],outputs=[sim_1,msg_1],queue=True) gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-faceId-corise-project)") demo.launch(debug=True,enable_queue=True)