File size: 5,664 Bytes
a557e27 e1a76a5 a557e27 f5b422d 4d35513 98ea658 a557e27 e1a76a5 f187dab 32bf62b 17aca0b 7f4ceb4 f187dab 17aca0b f187dab 9ad6ced 956f515 9855b70 ef03b1a 956f515 ef03b1a 9855b70 ef03b1a 9855b70 ef03b1a f187dab a557e27 e1a76a5 a557e27 aec5f52 a557e27 0ece682 a557e27 cc17af3 a557e27 f55cae9 a557e27 faa90d7 a557e27 d456856 7f4ceb4 6f4e437 00dfa0c 4f8e4c3 f187dab a557e27 ae7bc30 a557e27 907d604 a557e27 f187dab 6781233 a557e27 99992c7 89db9ff e0eb9d0 a557e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
from langchain.prompts.prompt import PromptTemplate
from langchain.llms import OpenAIChat
from langchain.chains import ChatVectorDBChain
from langchain.embeddings import HuggingFaceEmbeddings, HuggingFaceInstructEmbeddings
from langchain.callbacks.base import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import FAISS
import os
from typing import Optional, Tuple
import gradio as gr
import pickle
from threading import Lock
prefix_messages = [{"role": "system", "content": "You are a helpful assistant that is very good at answering questions about investments using the information given."}]
model_options = {'all-mpnet-base-v2': "sentence-transformers/all-mpnet-base-v2",
'instructor-base': "hkunlp/instructor-base"}
model_options_list = list(model_options.keys())
def load_vectorstore(model):
'''load embeddings and vectorstore'''
if 'mpnet' in model:
emb = HuggingFaceEmbeddings(model_name=model)
return FAISS.load_local('vanguard-embeddings', emb)
elif 'instructor'in model:
emb = HuggingFaceInstructEmbeddings(model_name=model,
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ',
embed_instruction='Represent the Financial paragraph for retrieval: ')
return FAISS.load_local('vanguard_embeddings_inst', emb)
#default embeddings
vectorstore = load_vectorstore(model_options['all-mpnet-base-v2'])
def on_value_change(change):
'''When radio changes, change the embeddings'''
global vectorstore
vectorstore = load_vectorstore(model_options[change])
# vectorstore = load_vectorstore('vanguard-embeddings',sbert_emb)
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
You can assume the question about investing and the investment management industry.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
template = """You are an AI assistant for answering questions about investing and the investment management industry.
You are given the following extracted parts of a long document and a question. Provide a conversational answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
If the question is not about investing, politely inform them that you are tuned to only answer questions about investing and the investment management industry.
Question: {question}
=========
{context}
=========
Answer in Markdown:"""
QA_PROMPT = PromptTemplate(template=template, input_variables=["question", "context"])
def get_chain(vectorstore):
llm = OpenAIChat(streaming=True, callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]), verbose=True, temperature=0,\
prefix_messages=prefix_messages)
qa_chain = ChatVectorDBChain.from_llm(
llm,
vectorstore,
qa_prompt=QA_PROMPT,
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
)
return qa_chain
class ChatWrapper:
global chain
def __init__(self):
self.lock = Lock()
def __call__(
self, inp: str, history: Optional[Tuple[str, str]], chain
):
"""Execute the chat functionality."""
self.lock.acquire()
try:
history = history or []
# Set OpenAI key
chain = get_chain(vectorstore)
# Run chain and append input.
output = chain({"question": inp, "chat_history": history})["answer"]
history.append((inp, output))
except Exception as e:
raise e
finally:
self.lock.release()
return history, history
block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
with block:
with gr.Row():
gr.Markdown("<h3><center>Chat-Your-Data (Investor Education)</center></h3>")
with gr.Row():
embeddings = gr.Radio(choices=model_options_list,value=model_options_list[0], label='Choose your Embedding Model',
interactive=True)
embeddings.change(on_value_change, embeddings)
vectorstore = load_vectorstore(embeddings.value)
chatbot = gr.Chatbot()
chat = ChatWrapper()
with gr.Row():
message = gr.Textbox(
label="What's your question?",
placeholder="Ask questions about Investing",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary").style(full_width=False)
gr.Examples(
examples=[
"What are the benefits of investing in ETFs?",
"What is the average cost of investing in a managed fund?",
"At what age can I start investing?",
"Do you offer investment accounts for kids?"
],
inputs=message,
)
gr.HTML("Demo application of a LangChain chain.")
gr.HTML(
"<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain π¦οΈπ</a></center>"
)
state = gr.State()
agent_state = gr.State()
submit.click(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
message.submit(chat, inputs=[message, state, agent_state], outputs=[chatbot, state])
# agent_state = chain
gr.Markdown("")
block.launch(debug=True)
|