Update app.py
Browse files
app.py
CHANGED
@@ -29,10 +29,10 @@ from langchain.prompts import PromptTemplate
|
|
29 |
|
30 |
prefix_messages = [{"role": "system", "content": "You are a helpful assistant that is very good at answering questions about investments using the information given."}]
|
31 |
|
32 |
-
|
33 |
-
'
|
34 |
|
35 |
-
|
36 |
|
37 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
38 |
|
@@ -66,28 +66,21 @@ def load_prompt():
|
|
66 |
|
67 |
return prompt
|
68 |
|
69 |
-
def load_vectorstore(
|
70 |
'''load embeddings and vectorstore'''
|
71 |
-
|
72 |
-
if 'mpnet' in model:
|
73 |
-
|
74 |
-
emb = HuggingFaceEmbeddings(model_name=model)
|
75 |
-
return FAISS.load_local('vanguard-embeddings', emb)
|
76 |
-
|
77 |
-
elif 'instructor'in model:
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
return FAISS.load_local('vanguard_embeddings_inst', emb)
|
83 |
|
84 |
#default embeddings and store
|
85 |
-
vectorstore = load_vectorstore(
|
86 |
|
87 |
-
def on_value_change(
|
88 |
-
'''When radio changes, change the
|
|
|
89 |
global vectorstore
|
90 |
-
vectorstore = load_vectorstore(
|
91 |
|
92 |
# vectorstore = load_vectorstore('vanguard-embeddings',sbert_emb)
|
93 |
|
@@ -165,15 +158,11 @@ with block:
|
|
165 |
gr.Markdown("<h3><center>Chat-Your-Data (Investor Education)</center></h3>")
|
166 |
embed_but = gr.Button(value='Load QA Chain')
|
167 |
with gr.Row():
|
168 |
-
websites = gr.Radio(choices=
|
169 |
interactive=True)
|
170 |
websites.change(on_value_change, websites)
|
171 |
-
with gr.Row():
|
172 |
-
embeddings = gr.Radio(choices=model_options_list,value=model_options_list[0], label='Choose your Embedding Model',
|
173 |
-
interactive=True)
|
174 |
-
embeddings.change(on_value_change, embeddings)
|
175 |
|
176 |
-
vectorstore = load_vectorstore(
|
177 |
|
178 |
chatbot = gr.Chatbot()
|
179 |
|
|
|
29 |
|
30 |
prefix_messages = [{"role": "system", "content": "You are a helpful assistant that is very good at answering questions about investments using the information given."}]
|
31 |
|
32 |
+
site_options = {'US': 'vanguard_embeddings_US',
|
33 |
+
'AUS': 'vanguard_embeddings'}
|
34 |
|
35 |
+
site_options_list = list(site_options.keys())
|
36 |
|
37 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True, output_key='answer')
|
38 |
|
|
|
66 |
|
67 |
return prompt
|
68 |
|
69 |
+
def load_vectorstore(site):
|
70 |
'''load embeddings and vectorstore'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
emb = HuggingFaceEmbeddings(model_name="all-mpnet-base-v2")
|
73 |
+
|
74 |
+
return FAISS.load_local(site, emb)
|
|
|
75 |
|
76 |
#default embeddings and store
|
77 |
+
vectorstore = load_vectorstore(website_options_list_options[0])
|
78 |
|
79 |
+
def on_value_change(site):
|
80 |
+
'''When radio changes, change the website reference data'''
|
81 |
+
|
82 |
global vectorstore
|
83 |
+
vectorstore = load_vectorstore(site)
|
84 |
|
85 |
# vectorstore = load_vectorstore('vanguard-embeddings',sbert_emb)
|
86 |
|
|
|
158 |
gr.Markdown("<h3><center>Chat-Your-Data (Investor Education)</center></h3>")
|
159 |
embed_but = gr.Button(value='Load QA Chain')
|
160 |
with gr.Row():
|
161 |
+
websites = gr.Radio(choices=site_options_list,value=site_options_list[0],label='Select US or AUS website data',
|
162 |
interactive=True)
|
163 |
websites.change(on_value_change, websites)
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
vectorstore = load_vectorstore(websites.value)
|
166 |
|
167 |
chatbot = gr.Chatbot()
|
168 |
|