Spaces:
Runtime error
Runtime error
| import argparse | |
| import pandas as pd | |
| import requests | |
| from tqdm import tqdm | |
| tqdm.pandas() | |
| def getFirstFamilyName(recordedBy): | |
| firstFamilyName = None | |
| parsed = bananompy.parse(recordedBy) | |
| try: | |
| firstFamilyName = parsed[0]['parsed'][0]['family'] | |
| except: | |
| pass | |
| return firstFamilyName | |
| def getFirstFamilyNames(recordedBy_l): | |
| # post to bionomia | |
| bionomia_parse_endpoint_url = "https://api.bionomia.net/parse.json" | |
| data = dict() | |
| data['names'] = '\r\n'.join(recordedBy_l) | |
| r = requests.post(bionomia_parse_endpoint_url, data=data) | |
| parsed_results = r.json() | |
| results = dict() | |
| for parsed_result in parsed_results: | |
| try: | |
| results[parsed_result['original']] = parsed_result['parsed'][0]['family'] | |
| except: | |
| results[parsed_result['original']] = None | |
| return results | |
| def getFirstFamilyNameBulk(df, | |
| recordedByColName="recordedBy", | |
| firstFamilyNameColName="recordedBy_first_familyname", | |
| batchsize=500): | |
| results = dict() | |
| recordedBy_l = [] | |
| for s in tqdm(df[recordedByColName].values): | |
| if len(recordedBy_l) == batchsize: | |
| # send it | |
| results.update(getFirstFamilyNames(recordedBy_l)) | |
| # clear for next iteration | |
| recordedBy_l = [] | |
| recordedBy_l.append(s) | |
| if len(recordedBy_l) > 0: | |
| results.update(getFirstFamilyNames(recordedBy_l)) | |
| df[firstFamilyNameColName] = df[recordedByColName].map(results) | |
| return df | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("inputfile") | |
| parser.add_argument("-c","--createcols", action='store_true') | |
| parser.add_argument("-l","--limit", type=int) | |
| parser.add_argument("outputfile") | |
| args = parser.parse_args() | |
| df = pd.read_csv(args.inputfile, | |
| encoding='utf8', | |
| keep_default_na=False, | |
| on_bad_lines='skip', | |
| sep='\t', | |
| nrows=args.limit) | |
| if args.createcols: | |
| # Extract unique recordedBy values | |
| df_rb = df[['recordedBy']].drop_duplicates() | |
| df_rb = getFirstFamilyNameBulk(df_rb) | |
| #df_rb['recordedBy_first_familyname'] = df_rb.recordedBy.progress_apply(getFirstFamilyName) | |
| # Apply back to main dataframe | |
| df = pd.merge(left = df, right=df_rb, left_on='recordedBy', right_on='recordedBy', how='left') | |
| # Add column holding collector name and number | |
| mask = (df.recordNumber.notnull()) | |
| df.loc[mask,'collectorNameAndNumber']=df[mask].apply(lambda row: '{} {}'.format(row['recordedBy_first_familyname'],row['recordNumber']),axis=1) | |
| df.to_csv(args.outputfile, index=False, sep=',') |