Spaces:
Sleeping
Sleeping
File size: 16,175 Bytes
0cd6d05 34c1316 0cd6d05 d1e7ead 0cd6d05 d1e7ead 0cd6d05 419bf7b 0cd6d05 419bf7b 0cd6d05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, STOKEStreamer
from threading import Thread
import json
import torch
import matplotlib.pyplot as plt
from matplotlib.colors import to_hex
import numpy as np
import os
import urllib.request
import zipfile
class MLP(torch.nn.Module):
def __init__(self, input_dim, output_dim, hidden_dim=1024, layer_id=0, cuda=False):
super(MLP, self).__init__()
self.fc1 = torch.nn.Linear(input_dim, hidden_dim) # Input layer to hidden layer
self.fc3 = torch.nn.Linear(hidden_dim, output_dim) # Hidden layer to output layer
self.layer_id = layer_id
if cuda:
self.device = "cuda"
else:
self.device = "cpu"
self.to(self.device)
def forward(self, x):
x = torch.flatten(x, start_dim=1)
x = torch.relu(self.fc1(x))
x = self.fc3(x)
return torch.argmax(x, dim=-1).cpu().detach(), torch.softmax(x, dim=-1).cpu().detach()
def map_value_to_color(value, colormap_name='tab20c'):
"""
Map a value between 0 and 1 to a CSS color using a Python colormap.
Args:
value (float): A value between 0 and 1.
colormap_name (str): The name of the colormap to use (e.g., 'viridis').
Returns:
str: A CSS color string in the form 'rgb(r, g, b)'.
"""
# Ensure the value is within the range [0, 1]
value = np.clip(value, 0.0, 1.0)
# Get the colormap
colormap = plt.get_cmap(colormap_name)
# Map the value to a color
rgba_color = colormap(value)
# Convert the RGBA color to CSS format
css_color = to_hex(rgba_color)
return css_color + "88"
@st.cache_resource
def get_model_and_tokenizer(name):
# Load pre-trained model and tokenizer
tok = AutoTokenizer.from_pretrained(name)
model = AutoModelForCausalLM.from_pretrained(name)
return model, tok
@st.cache_resource
def get_classifiers_for_model(att_size, emb_size, device, config_paths):
classifier_token = None
#print(config)
config = {
"classifier_token": json.load(open(os.path.join(config_paths["classifier_token"], "config.json"), "r")),
"classifier_span": json.load(open(os.path.join(config_paths["classifier_span"], "config.json"), "r"))
}
layer_id = config["classifier_token"]["layer"]
classifier_span = MLP(att_size, 2, hidden_dim=config["classifier_span"]["classifier_dim"]).to(device)
classifier_span.load_state_dict(torch.load(os.path.join(config_paths["classifier_span"], "checkpoint.pt"), map_location=device))
classifier_token = MLP(emb_size, len(config["classifier_token"]["label_map"]), layer_id=layer_id, hidden_dim=config["classifier_token"]["classifier_dim"]).to(device)
classifier_token.load_state_dict(torch.load(os.path.join(config_paths["classifier_token"], "checkpoint.pt"), map_location=device))
print(sum(p.numel() for p in classifier_span.parameters()), sum(p.numel() for p in classifier_token.parameters()))
return classifier_span, classifier_token, config["classifier_token"]["label_map"]
def get_available_models():
available_models = []
for model_name in ["gpt2", "gpt2-xl"]:
if os.path.isfile(f"checkpoints/{model_name}/config.json"):
available_models.append(model_name)
return available_models
def get_available_datasets(model_name):
available_datasets = []
config_path = f"checkpoints/{model_name}/config.json"
if os.path.isfile(config_path):
with open(config_path, "r") as f:
config = json.load(f)
# Assuming datasets are keys in config.json
available_datasets = list(config.keys())
return available_datasets
def download_and_extract_zip(url, extract_dir):
# Determine the parent directory
parent_dir = os.path.split(os.path.dirname(extract_dir))[-2]
print(parent_dir)
# Download the zip file to the parent directory
zip_file_path = os.path.join(parent_dir, "data.zip")
urllib.request.urlretrieve(url, zip_file_path)
# Extract the zip file
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(parent_dir)
# Remove the zip file
os.remove(zip_file_path)
def find_datasets_and_model_ids(root_dir):
datasets = {}
# Check if the root directory exists
if not os.path.exists(root_dir):
# If root directory doesn't exist, download a zip file and unpack it
print("Root directory doesn't exist. Downloading zip file...")
url = "https://drive.usercontent.google.com/download?id=1i5UkWikRZGhsbv21ZZSjEZl6-VwNC0lp&export=download&authuser=0&confirm=t&uuid=c33ef625-9ec8-4dbf-bdb0-ad6cabc70a33&at=APZUnTWWJSzU9pV2XV-sMPtbgdgj%3A1711096726305" # Replace with your actual download URL
download_and_extract_zip(url, root_dir)
print("Zip file downloaded and unpacked successfully.")
for root, dirs, files in os.walk(root_dir):
if 'config.json' in files and 'stoke_config.json' in files:
config_path = os.path.join(root, 'config.json')
stoke_config_path = os.path.join(root, 'stoke_config.json')
with open(config_path, 'r') as f:
config_data = json.load(f)
model_id = config_data.get('model_id')
if model_id:
dataset_name = os.path.basename(os.path.dirname(config_path))
with open(stoke_config_path, 'r') as f:
stoke_config_data = json.load(f)
if model_id:
dataset_name = os.path.basename(os.path.dirname(stoke_config_path))
datasets.setdefault(model_id, {})[dataset_name] = stoke_config_data
return datasets
# Main content
st.title("Playground")
# Sidebar for model and dataset selection
with st.sidebar:
st.subheader("Model and Dataset Selection")
datasets = find_datasets_and_model_ids("data/")
available_models = datasets.keys()
print(datasets)
if available_models:
model_selection = st.selectbox("Select Model", available_models)
else:
st.error("No models available. Please check the file paths.")
# Select dataset based on selected model
available_datasets = datasets[model_selection]
if available_datasets:
dataset_selection = st.selectbox("Select Dataset", sorted(available_datasets))
else:
st.error("No datasets available for the selected model.")
# Select dataset based on selected model
available_configs = datasets[model_selection][dataset_selection]
if available_configs:
config_selection = st.selectbox("Select Config", available_configs.keys())
else:
st.error("No configs available for the selected dataset.")
# Load model and streamer based on selections
model, tok = get_model_and_tokenizer(model_selection)
if torch.cuda.is_available():
model.cuda()
classifier_span, classifier_token, label_map = get_classifiers_for_model(model.config.n_head*model.config.n_layer, model.config.n_embd, model.device, datasets[model_selection][dataset_selection][config_selection])
streamer = STOKEStreamer(tok, classifier_token, classifier_span)
new_tags = label_map
def filter_spans(spans_and_values):
if spans_and_values == []:
return [], []
# Create a dictionary to store spans based on their second index values
span_dict = {}
spans, values = [x[0] for x in spans_and_values], [x[1] for x in spans_and_values]
# Iterate through the spans and update the dictionary with the highest value
for span, value in zip(spans, values):
start, end = span
if start > end or end - start > 15 or start == 0:
continue
current_value = span_dict.get(end, None)
if current_value is None or current_value[1] < value:
span_dict[end] = (span, value)
if span_dict == {}:
return [], []
# Extract the filtered spans and values
filtered_spans, filtered_values = zip(*span_dict.values())
return list(filtered_spans), list(filtered_values)
def remove_overlapping_spans(spans):
# Sort the spans based on their end points
sorted_spans = sorted(spans, key=lambda x: x[0][1])
non_overlapping_spans = []
last_end = float('-inf')
# Iterate through the sorted spans
for span in sorted_spans:
start, end = span[0]
value = span[1]
# If the current span does not overlap with the previous one
if start >= last_end:
non_overlapping_spans.append(span)
last_end = end
else:
# If it overlaps, choose the one with the highest value
existing_span_index = -1
for i, existing_span in enumerate(non_overlapping_spans):
if existing_span[0][1] <= start:
existing_span_index = i
break
if existing_span_index != -1 and non_overlapping_spans[existing_span_index][1] < value:
non_overlapping_spans[existing_span_index] = span
return non_overlapping_spans
def generate_html_no_overlap(tokenized_text, spans):
current_index = 0
html_content = ""
for (span_start, span_end), value in spans:
# Add text before the span
html_content += "".join(tokenized_text[current_index:span_start])
# Add the span with underlining
html_content += "<b><u>"
html_content += "".join(tokenized_text[span_start:span_end])
html_content += "</u></b> "
current_index = span_end
# Add any remaining text after the last span
html_content += "".join(tokenized_text[current_index:])
return html_content
css = """
<style>
.highlight {
display: inline;
}
.highlight::after {
background-color: var(data-color);
}
.spanhighlight {
padding: 2px 5px;
border-radius: 5px;
}
.tooltip {
position: relative;
display: inline-block;
}
.tooltip::after {
content: attr(data-tooltip-text); /* Set content from data-tooltip-text attribute */
display: none;
position: absolute;
background-color: #333;
color: #fff;
padding: 5px;
border-radius: 5px;
bottom: 100%; /* Position it above the element */
left: 50%;
transform: translateX(-50%);
width: auto;
min-width: 120px;
margin: 0 auto;
text-align: center;
}
.tooltip:hover::after {
display: block; /* Show the tooltip on hover */
}
.small-text {
padding: 2px 5px;
background-color: white;
border-radius: 5px;
font-size: xx-small;
margin-left: 0.5em;
vertical-align: 0.2em;
font-weight: bold;
color: grey;
}
</style>"""
def generate_html_spanwise(token_strings, tokenwise_preds, spans, tokenizer):
# spanwise annotated text
annotated = []
span_ends = -1
in_span = False
out_of_span_tokens = []
for i in reversed(range(len(tokenwise_preds))):
if in_span:
if i >= span_ends:
continue
else:
in_span = False
predicted_class = ""
style = ""
span = None
for s in spans:
if s[1] == i+1:
span = s
if tokenwise_preds[i] != 0 and span is not None:
predicted_class = f"highlight spanhighlight"
style = f"background-color: {map_value_to_color((tokenwise_preds[i]-1)/(len(new_tags)-1))}"
if tokenizer.convert_tokens_to_string([token_strings[i]]).startswith(" "):
annotated.append("Ġ")
span_opener = f"Ġ<span class='{predicted_class}' data-tooltip-text='{new_tags[tokenwise_preds[i]]}' style='{style}'>".replace(" ", "Ġ")
span_end = f"<span class='small-text'>{new_tags[tokenwise_preds[i]]}</span></span>"
annotated.extend(out_of_span_tokens)
out_of_span_tokens = []
span_ends = span[0]
in_span = True
annotated.append(span_end)
annotated.extend([token_strings[x] for x in reversed(range(span[0], span[1]))])
annotated.append(span_opener)
else:
out_of_span_tokens.append(token_strings[i])
annotated.extend(out_of_span_tokens)
return [x for x in reversed(annotated)]
# Define function to generate text based on input
def generate_text(generation_kwargs, output_field):
# Start text generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Display generated text as it becomes available
text_tokenwise = ""
text_spans = ""
removed_spans = ""
tags = []
spans = []
for new_text in streamer:
if new_text[1] is not None and new_text[2] != ['']:
text_tokenwise = ""
tags.extend(new_text[1])
spans.extend(new_text[-1])
# Tokenwise Classification
for tk, pred in zip(new_text[2],tags):
if pred != 0:
style = f"background-color: {map_value_to_color((pred-1)/(len(new_tags)-1))}"
if tk.startswith(" "):
text_tokenwise += " "
text_tokenwise += f"<span class='tooltip highlight' data-tooltip-text='{new_tags[pred]}' style='{style}'>{tk}</span>"
else:
text_tokenwise += tk
# Span Classification
text_spans = ""
if len(spans) > 0:
filtered_spans = remove_overlapping_spans(spans)
text_spans = generate_html_no_overlap(new_text[2], filtered_spans)
if len(spans) - len(filtered_spans) > 0:
removed_spans = f"{len(spans) - len(filtered_spans)} span(s) hidden due to overlap."
else:
for tk in new_text[2]:
text_spans += f"{tk}"
# Spanwise Classification
annotated_tokens = generate_html_spanwise(new_text[2], tags, [x for x in filter_spans(spans)[0]], tok)
generated_text_spanwise = tok.convert_tokens_to_string(annotated_tokens).replace("<|endoftext|>", "")
output_field.empty()
output = f"{css}"
output += generated_text_spanwise.replace("\n", " ").replace("$", "$") + "\n<br>"
output += "<details><summary>Show tokenwise classification</summary>\n" + text_tokenwise.replace("\n", " ").replace("$", "\\$")
#output += "</details><details><summary>Show spans</summary>\n" + text_spans.replace("\n", " ").replace("$", "\\$")
if removed_spans != "":
output += f"<br><br><i>({removed_spans})</i>"
output += "</details>"
output_field.write(output, unsafe_allow_html=True)
# Input field
input_text = st.text_area("Enter prompt for completion", "")
# Sidebar for customizing generation parameters
with st.sidebar:
st.subheader("Generation Parameters")
max_new_tokens = st.slider("Max New Tokens", min_value=1, max_value=100, value=30)
repetition_penalty = st.slider("Repetition Penalty", min_value=1.0, max_value=2.0, value=1.2)
do_sample = st.checkbox("Do Sample", value=True)
temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=1.0)
top_p = st.slider("Top-p", min_value=0.1, max_value=1.0, value=0.3)
top_k = st.slider("Top-k", min_value=10, max_value=100, value=50)
typical_p = st.slider("Typical P", min_value=0.1, max_value=1.0, value=1.0)
# Button to generate text
if st.button("Generate"):
if input_text:
output_field = st.empty()
inputs = tok([" " + input_text], return_tensors="pt").to(model.device)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty, temperature=temperature,
top_p=top_p, top_k=top_k, do_sample=do_sample, typical_p=typical_p)
generate_text(generation_kwargs, output_field)
else:
st.warning("Please enter some text first.")
|