Spaces:
Runtime error
Runtime error
import os | |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') | |
os.system("git clone https://github.com/microsoft/unilm.git") | |
import sys | |
sys.path.append("unilm") | |
import cv2 | |
from unilm.dit.object_detection.ditod import add_vit_config | |
from detectron2.config import CfgNode as CN | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import ColorMode, Visualizer | |
from detectron2.data import MetadataCatalog | |
from detectron2.engine import DefaultPredictor | |
import gradio as gr | |
# Step 1: instantiate config | |
cfg = get_cfg() | |
add_vit_config(cfg) | |
cfg.merge_from_file("cascade_dit_base.yml") | |
# Step 2: add model weights URL to config | |
cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth" | |
# Step 3: set device | |
# TODO also support GPU | |
cfg.MODEL.DEVICE='cpu' | |
# Step 4: define model | |
predictor = DefaultPredictor(cfg) | |
def analyze_image(img): | |
md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) | |
if cfg.DATASETS.TEST[0]=='icdar2019_test': | |
md.set(thing_classes=["table"]) | |
else: | |
md.set(thing_classes=["text","title","list","table","figure"]) | |
output = predictor(img)["instances"] | |
v = Visualizer(img[:, :, ::-1], | |
md, | |
scale=1.0, | |
instance_mode=ColorMode.SEGMENTATION) | |
result = v.draw_instance_predictions(output.to("cpu")) | |
result_image = result.get_image()[:, :, ::-1] | |
return result_image | |
title = "Interactive demo: Document Layout Analysis with DiT" | |
description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2203.02378' target='_blank'>DiT: Self-supervised Pre-training for Document Image Transformer</a> | <a href='https://github.com/microsoft/unilm/dit' target='_blank'>Github Repo</a></p>" | |
examples =[['publaynet_example.jpeg']] | |
iface = gr.Interface(fn=analyze_image, | |
inputs=gr.inputs.Image(type="numpy"), | |
outputs=gr.outputs.Image(type="numpy", label="analyzed image"), | |
title=title, | |
description=description, | |
examples=examples, | |
enable_queue=True) | |
iface.launch(debug=True) |