Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,25 +2,13 @@ import gradio as gr
|
|
| 2 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
|
|
|
| 5 |
|
| 6 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
| 7 |
|
| 8 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 9 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 10 |
|
| 11 |
-
def compute_depth(depth, bits):
|
| 12 |
-
depth_min = depth.min()
|
| 13 |
-
depth_max = depth.max()
|
| 14 |
-
|
| 15 |
-
max_val = (2 ** (8 * bits)) - 1
|
| 16 |
-
|
| 17 |
-
if depth_max - depth_min > np.finfo("float").eps:
|
| 18 |
-
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
| 19 |
-
else:
|
| 20 |
-
out = np.zeros(depth.shape, dtype=depth.dtype)
|
| 21 |
-
|
| 22 |
-
return out/65536
|
| 23 |
-
|
| 24 |
def process_image(image):
|
| 25 |
# prepare image for the model
|
| 26 |
encoding = feature_extractor(image, return_tensors="pt")
|
|
@@ -37,9 +25,10 @@ def process_image(image):
|
|
| 37 |
mode="bicubic",
|
| 38 |
align_corners=False,
|
| 39 |
)
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
|
| 44 |
return result
|
| 45 |
|
|
@@ -49,7 +38,7 @@ examples =[['cats.jpg']]
|
|
| 49 |
|
| 50 |
iface = gr.Interface(fn=process_image,
|
| 51 |
inputs=gr.inputs.Image(type="pil"),
|
| 52 |
-
outputs=gr.outputs.Image(label="predicted depth"),
|
| 53 |
title=title,
|
| 54 |
description=description,
|
| 55 |
examples=examples,
|
|
|
|
| 2 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
|
| 7 |
torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
|
| 8 |
|
| 9 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
| 10 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
def process_image(image):
|
| 13 |
# prepare image for the model
|
| 14 |
encoding = feature_extractor(image, return_tensors="pt")
|
|
|
|
| 25 |
mode="bicubic",
|
| 26 |
align_corners=False,
|
| 27 |
)
|
| 28 |
+
output = prediction.cpu().numpy()
|
| 29 |
+
formatted = (output * 255 / np.max(output)).astype('uint8')
|
| 30 |
+
img = Image.fromarray(formatted)
|
| 31 |
+
return img
|
| 32 |
|
| 33 |
return result
|
| 34 |
|
|
|
|
| 38 |
|
| 39 |
iface = gr.Interface(fn=process_image,
|
| 40 |
inputs=gr.inputs.Image(type="pil"),
|
| 41 |
+
outputs=gr.outputs.Image(type="pil", label="predicted depth"),
|
| 42 |
title=title,
|
| 43 |
description=description,
|
| 44 |
examples=examples,
|