Spaces:
Runtime error
Runtime error
File size: 2,053 Bytes
8cf56d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
import requests
from PIL import Image
import os
import torch
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x2-64")
def enhance(image):
# prepare image for the model
inputs = processor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# postprocess
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy()
output = np.moveaxis(output, source=0, destination=-1)
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(output)
title = "Swin2SR demo for Image Super-Resolution πππ₯"
description = '''
**This Demo expects low-quality and low-resolution JPEG compressed images, in the near future we will support any kind of input**
**We are looking for collaborators! Collaboratorλ₯Ό μ°Ύκ³ μμ΅λλ€!** π¬π§ πͺπΈ π°π· π«π· π·π΄ π©πͺ π¨π³
**Please check our github project: https://github.com/mv-lab/swin2sr or paper: https://arxiv.org/abs/2209.11345 feel free to contact us**
**Demos also available at [google colab](https://colab.research.google.com/drive/1paPrt62ydwLv2U2eZqfcFsePI4X4WRR1?usp=sharing) and [Kaggle](https://www.kaggle.com/code/jesucristo/super-resolution-demo-swin2sr-official/)**
</br>
'''
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2209.11345' target='_blank'>Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration</a> | <a href='https://github.com/mv-lab/swin2sr' target='_blank'>Github Repo</a></p>"
gr.Interface(
enhance,
gr.inputs.Image(type="pil", label="Input").style(height=260),
gr.inputs.Image(type="pil", label="Ouput").style(height=240),
title=title,
description=description,
article=article,
).launch(enable_queue=True) |