Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
# ----------------------------------------------------------------------------
|
2 |
# Import necessary libraries
|
3 |
# ----------------------------------------------------------------------------
|
@@ -25,6 +27,7 @@ plt.switch_backend('Agg')
|
|
25 |
# We use a small, efficient model to ensure the app runs smoothly.
|
26 |
try:
|
27 |
explanation_generator = pipeline('text2text-generation', model='google/flan-t5-small')
|
|
|
28 |
except Exception as e:
|
29 |
print(f"Could not load Hugging Face model. Explanations will be disabled. Error: {e}")
|
30 |
explanation_generator = None
|
@@ -42,6 +45,15 @@ sample_project_costs.to_csv(SAMPLE_CSV_PATH, index=False)
|
|
42 |
# Core Logic Functions
|
43 |
# ----------------------------------------------------------------------------
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
46 |
"""
|
47 |
Processes the user's input from the UI.
|
@@ -71,21 +83,18 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
71 |
source_info = f"from uploaded file: {os.path.basename(file_obj.name)}"
|
72 |
data = df
|
73 |
except Exception as e:
|
74 |
-
return None,
|
75 |
-
elif example_choice == "Project Cost Estimation":
|
76 |
df = pd.read_csv(SAMPLE_CSV_PATH)
|
77 |
source_info = "from the 'Project Cost Estimation' example"
|
78 |
data = df
|
79 |
elif manual_mean is not None and manual_std is not None:
|
80 |
-
# If manual input, we don't have raw data, just parameters.
|
81 |
-
# We'll return these params to be used directly in the simulation.
|
82 |
if manual_std <= 0:
|
83 |
-
return None,
|
84 |
|
85 |
stats_text = (f"Source: Manual Input\n"
|
86 |
f"Mean: {manual_mean:.2f}\n"
|
87 |
f"Standard Deviation: {manual_std:.2f}")
|
88 |
-
# Create a dummy plot for manual input
|
89 |
fig, ax = plt.subplots()
|
90 |
ax.text(0.5, 0.5, 'Manual input:\nNo data to plot.\nSimulation will use\nthe provided Mean/Std.',
|
91 |
ha='center', va='center', fontsize=12)
|
@@ -93,19 +102,18 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
93 |
ax.set_yticks([])
|
94 |
plt.tight_layout()
|
95 |
|
96 |
-
# Use a special DataFrame to signal manual input downstream
|
97 |
manual_df = pd.DataFrame({'mean': [manual_mean], 'std': [manual_std]})
|
98 |
return manual_df, fig, stats_text, "Manual parameters accepted. Ready to run simulation."
|
99 |
|
100 |
if data is None:
|
101 |
-
return None,
|
102 |
|
103 |
# 2. Validate data structure
|
104 |
if data.shape[1] != 1 or not pd.api.types.is_numeric_dtype(data.iloc[:, 0]):
|
105 |
error_msg = (f"Data Error: The data {source_info} is not compatible. "
|
106 |
"The app requires a CSV with a single column of numerical data. "
|
107 |
f"Detected {data.shape[1]} columns.")
|
108 |
-
return None,
|
109 |
|
110 |
# 3. Process valid data
|
111 |
series = data.iloc[:, 0].dropna()
|
@@ -113,13 +121,13 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
113 |
std = series.std()
|
114 |
|
115 |
if std == 0:
|
116 |
-
|
|
|
117 |
|
118 |
# 4. Generate visualization and stats
|
119 |
fig, ax = plt.subplots(figsize=(6, 4))
|
120 |
ax.hist(series, bins='auto', density=True, alpha=0.7, label='Input Data Distribution')
|
121 |
|
122 |
-
# Overlay a normal distribution curve
|
123 |
xmin, xmax = plt.xlim()
|
124 |
x = np.linspace(xmin, xmax, 100)
|
125 |
p = norm.pdf(x, mean, std)
|
@@ -147,49 +155,34 @@ def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
|
147 |
def run_monte_carlo_simulation(data, num_simulations, target_value):
|
148 |
"""
|
149 |
Performs the Monte Carlo simulation based on the processed data.
|
150 |
-
|
151 |
-
Args:
|
152 |
-
data (pd.DataFrame): The validated input data.
|
153 |
-
num_simulations (int): The number of simulation iterations to run.
|
154 |
-
target_value (float): A user-defined target to calculate probability against.
|
155 |
-
|
156 |
-
Returns:
|
157 |
-
tuple: A tuple containing:
|
158 |
-
- A Matplotlib figure of the simulation results histogram.
|
159 |
-
- A Matplotlib figure of the cumulative distribution (CDF).
|
160 |
-
- A string containing detailed numerical results.
|
161 |
"""
|
|
|
162 |
if data is None:
|
163 |
-
|
|
|
|
|
164 |
|
165 |
num_simulations = int(num_simulations)
|
166 |
|
167 |
-
# Check if data is from manual input or from a file/example
|
168 |
if 'mean' in data.columns and 'std' in data.columns and data.shape[0] == 1:
|
169 |
mean = data['mean'].iloc[0]
|
170 |
std = data['std'].iloc[0]
|
171 |
-
data_name = "Value"
|
172 |
else:
|
173 |
series = data.iloc[:, 0]
|
174 |
mean = series.mean()
|
175 |
std = series.std()
|
176 |
data_name = series.name
|
177 |
|
178 |
-
# The core of the Monte Carlo simulation: generate random samples
|
179 |
-
# We assume the underlying uncertainty follows a Normal Distribution
|
180 |
-
# defined by the mean and standard deviation of the input data.
|
181 |
simulation_results = np.random.normal(mean, std, num_simulations)
|
182 |
|
183 |
-
# --- Generate Results Histogram Plot ---
|
184 |
fig_hist, ax_hist = plt.subplots(figsize=(8, 5))
|
185 |
ax_hist.hist(simulation_results, bins=50, density=True, alpha=0.8, color='skyblue', edgecolor='black')
|
186 |
|
187 |
-
# Calculate key statistics for plotting
|
188 |
sim_mean = np.mean(simulation_results)
|
189 |
p5 = np.percentile(simulation_results, 5)
|
190 |
p95 = np.percentile(simulation_results, 95)
|
191 |
|
192 |
-
# Add vertical lines for key statistics
|
193 |
ax_hist.axvline(sim_mean, color='red', linestyle='--', linewidth=2, label=f'Mean: {sim_mean:.2f}')
|
194 |
ax_hist.axvline(p5, color='green', linestyle=':', linewidth=2, label=f'5th Percentile (P5): {p5:.2f}')
|
195 |
ax_hist.axvline(p95, color='green', linestyle=':', linewidth=2, label=f'95th Percentile (P95): {p95:.2f}')
|
@@ -201,13 +194,11 @@ def run_monte_carlo_simulation(data, num_simulations, target_value):
|
|
201 |
ax_hist.grid(True, linestyle='--', alpha=0.6)
|
202 |
plt.tight_layout()
|
203 |
|
204 |
-
# --- Generate Cumulative Distribution (CDF) Plot ---
|
205 |
fig_cdf, ax_cdf = plt.subplots(figsize=(8, 5))
|
206 |
sorted_results = np.sort(simulation_results)
|
207 |
yvals = np.arange(len(sorted_results)) / float(len(sorted_results) - 1)
|
208 |
ax_cdf.plot(sorted_results, yvals, label='CDF')
|
209 |
|
210 |
-
# Add markers for P5, P50, P95
|
211 |
p50 = np.percentile(simulation_results, 50)
|
212 |
ax_cdf.plot(p5, 0.05, 'go', ms=8, label=f'P5: {p5:.2f}')
|
213 |
ax_cdf.plot(p50, 0.50, 'ro', ms=8, label=f'Median (P50): {p50:.2f}')
|
@@ -220,7 +211,6 @@ def run_monte_carlo_simulation(data, num_simulations, target_value):
|
|
220 |
ax_cdf.legend()
|
221 |
plt.tight_layout()
|
222 |
|
223 |
-
# --- Calculate Final Numerical Results ---
|
224 |
prob_achieved = 0
|
225 |
if target_value is not None:
|
226 |
prob_achieved = np.sum(simulation_results <= target_value) / num_simulations * 100
|
@@ -248,17 +238,12 @@ def run_monte_carlo_simulation(data, num_simulations, target_value):
|
|
248 |
def generate_explanation(results_summary):
|
249 |
"""
|
250 |
Uses a Hugging Face model to explain the simulation results in simple terms.
|
251 |
-
|
252 |
-
Args:
|
253 |
-
results_summary (str): The numerical summary from the simulation.
|
254 |
-
|
255 |
-
Returns:
|
256 |
-
str: A generated explanation of the results.
|
257 |
"""
|
258 |
if explanation_generator is None:
|
259 |
return "LLM model not loaded. Cannot generate explanation."
|
260 |
-
|
261 |
-
|
|
|
262 |
|
263 |
prompt = f"""
|
264 |
Explain the following Monte Carlo simulation results to a non-technical manager.
|
@@ -297,9 +282,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
297 |
|
298 |
# --- Row 1: Data Input and Preparation ---
|
299 |
with gr.Row():
|
300 |
-
# --- Column 1.1: Data Collection ---
|
301 |
with gr.Column(scale=1):
|
302 |
-
with gr.
|
303 |
gr.Markdown("### 1. Data Collection")
|
304 |
gr.Markdown("Choose **one** method below.")
|
305 |
|
@@ -317,9 +301,8 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
317 |
|
318 |
prepare_button = gr.Button("Prepare Simulation", variant="secondary")
|
319 |
|
320 |
-
# --- Column 1.2: Preparation Plots & Visualization ---
|
321 |
with gr.Column(scale=2):
|
322 |
-
with gr.
|
323 |
gr.Markdown("### 2. Preparation & Visualization")
|
324 |
validation_output = gr.Textbox(label="Validation Status", interactive=False, lines=3)
|
325 |
input_stats_output = gr.Textbox(label="Input Data Statistics", interactive=False, lines=6)
|
@@ -327,7 +310,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
327 |
|
328 |
# --- Row 2: Simulation Controls and Results ---
|
329 |
with gr.Row():
|
330 |
-
with gr.
|
331 |
gr.Markdown("### 3. Simulation Run & Results")
|
332 |
with gr.Row():
|
333 |
with gr.Column(scale=1, min_width=250):
|
@@ -353,7 +336,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
353 |
|
354 |
# --- Row 3: AI-Powered Explanation ---
|
355 |
with gr.Row():
|
356 |
-
with gr.
|
357 |
gr.Markdown("### 4. AI-Powered Explanation")
|
358 |
explain_button = gr.Button("Explain the Takeaways", variant="secondary")
|
359 |
explanation_output = gr.Textbox(
|
@@ -367,7 +350,6 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
367 |
# Define UI Component Interactions
|
368 |
# ----------------------------------------------------------------------------
|
369 |
|
370 |
-
# Hidden state to store the processed data between steps
|
371 |
processed_data_state = gr.State()
|
372 |
|
373 |
prepare_button.click(
|
@@ -392,6 +374,4 @@ with gr.Blocks(theme=gr.themes.Soft(), title="Monte Carlo Simulation Explorer")
|
|
392 |
# Launch the Gradio App
|
393 |
# ----------------------------------------------------------------------------
|
394 |
if __name__ == "__main__":
|
395 |
-
# To run this app, save the code as a Python file (e.g., main.py)
|
396 |
-
# and run `python main.py` from your terminal.
|
397 |
app.launch(debug=True)
|
|
|
1 |
+
# main.py
|
2 |
+
|
3 |
# ----------------------------------------------------------------------------
|
4 |
# Import necessary libraries
|
5 |
# ----------------------------------------------------------------------------
|
|
|
27 |
# We use a small, efficient model to ensure the app runs smoothly.
|
28 |
try:
|
29 |
explanation_generator = pipeline('text2text-generation', model='google/flan-t5-small')
|
30 |
+
print("Hugging Face model loaded successfully.")
|
31 |
except Exception as e:
|
32 |
print(f"Could not load Hugging Face model. Explanations will be disabled. Error: {e}")
|
33 |
explanation_generator = None
|
|
|
45 |
# Core Logic Functions
|
46 |
# ----------------------------------------------------------------------------
|
47 |
|
48 |
+
def create_error_plot(message):
|
49 |
+
"""Creates a matplotlib plot with a specified error message."""
|
50 |
+
fig, ax = plt.subplots(figsize=(8, 5))
|
51 |
+
ax.text(0.5, 0.5, message, ha='center', va='center', wrap=True, color='red', fontsize=12)
|
52 |
+
ax.set_xticks([])
|
53 |
+
ax.set_yticks([])
|
54 |
+
plt.tight_layout()
|
55 |
+
return fig
|
56 |
+
|
57 |
def process_input_data(file_obj, example_choice, manual_mean, manual_std):
|
58 |
"""
|
59 |
Processes the user's input from the UI.
|
|
|
83 |
source_info = f"from uploaded file: {os.path.basename(file_obj.name)}"
|
84 |
data = df
|
85 |
except Exception as e:
|
86 |
+
return None, create_error_plot(f"Error reading file: {e}"), None, f"Error reading file: {e}. Please ensure it's a valid CSV."
|
87 |
+
elif example_choice and example_choice == "Project Cost Estimation":
|
88 |
df = pd.read_csv(SAMPLE_CSV_PATH)
|
89 |
source_info = "from the 'Project Cost Estimation' example"
|
90 |
data = df
|
91 |
elif manual_mean is not None and manual_std is not None:
|
|
|
|
|
92 |
if manual_std <= 0:
|
93 |
+
return None, create_error_plot("Standard Deviation must be positive."), None, "Manual Input Error: Standard Deviation must be positive."
|
94 |
|
95 |
stats_text = (f"Source: Manual Input\n"
|
96 |
f"Mean: {manual_mean:.2f}\n"
|
97 |
f"Standard Deviation: {manual_std:.2f}")
|
|
|
98 |
fig, ax = plt.subplots()
|
99 |
ax.text(0.5, 0.5, 'Manual input:\nNo data to plot.\nSimulation will use\nthe provided Mean/Std.',
|
100 |
ha='center', va='center', fontsize=12)
|
|
|
102 |
ax.set_yticks([])
|
103 |
plt.tight_layout()
|
104 |
|
|
|
105 |
manual_df = pd.DataFrame({'mean': [manual_mean], 'std': [manual_std]})
|
106 |
return manual_df, fig, stats_text, "Manual parameters accepted. Ready to run simulation."
|
107 |
|
108 |
if data is None:
|
109 |
+
return None, create_error_plot("No data source provided."), None, "No data source provided. Please upload a file, choose an example, or enter parameters."
|
110 |
|
111 |
# 2. Validate data structure
|
112 |
if data.shape[1] != 1 or not pd.api.types.is_numeric_dtype(data.iloc[:, 0]):
|
113 |
error_msg = (f"Data Error: The data {source_info} is not compatible. "
|
114 |
"The app requires a CSV with a single column of numerical data. "
|
115 |
f"Detected {data.shape[1]} columns.")
|
116 |
+
return None, create_error_plot(error_msg), None, error_msg
|
117 |
|
118 |
# 3. Process valid data
|
119 |
series = data.iloc[:, 0].dropna()
|
|
|
121 |
std = series.std()
|
122 |
|
123 |
if std == 0:
|
124 |
+
error_msg = "Data Error: All values are the same. Standard deviation is zero, cannot simulate uncertainty."
|
125 |
+
return None, create_error_plot(error_msg), None, error_msg
|
126 |
|
127 |
# 4. Generate visualization and stats
|
128 |
fig, ax = plt.subplots(figsize=(6, 4))
|
129 |
ax.hist(series, bins='auto', density=True, alpha=0.7, label='Input Data Distribution')
|
130 |
|
|
|
131 |
xmin, xmax = plt.xlim()
|
132 |
x = np.linspace(xmin, xmax, 100)
|
133 |
p = norm.pdf(x, mean, std)
|
|
|
155 |
def run_monte_carlo_simulation(data, num_simulations, target_value):
|
156 |
"""
|
157 |
Performs the Monte Carlo simulation based on the processed data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
"""
|
159 |
+
# **NEW**: Check for valid data at the beginning and return clear error plots if invalid.
|
160 |
if data is None:
|
161 |
+
error_message = "ERROR: No valid data available.\nPlease go to Step 1 & 2 and click 'Prepare Simulation' first."
|
162 |
+
error_plot = create_error_plot(error_message)
|
163 |
+
return error_plot, error_plot, "Simulation failed. See plot for details."
|
164 |
|
165 |
num_simulations = int(num_simulations)
|
166 |
|
|
|
167 |
if 'mean' in data.columns and 'std' in data.columns and data.shape[0] == 1:
|
168 |
mean = data['mean'].iloc[0]
|
169 |
std = data['std'].iloc[0]
|
170 |
+
data_name = "Value"
|
171 |
else:
|
172 |
series = data.iloc[:, 0]
|
173 |
mean = series.mean()
|
174 |
std = series.std()
|
175 |
data_name = series.name
|
176 |
|
|
|
|
|
|
|
177 |
simulation_results = np.random.normal(mean, std, num_simulations)
|
178 |
|
|
|
179 |
fig_hist, ax_hist = plt.subplots(figsize=(8, 5))
|
180 |
ax_hist.hist(simulation_results, bins=50, density=True, alpha=0.8, color='skyblue', edgecolor='black')
|
181 |
|
|
|
182 |
sim_mean = np.mean(simulation_results)
|
183 |
p5 = np.percentile(simulation_results, 5)
|
184 |
p95 = np.percentile(simulation_results, 95)
|
185 |
|
|
|
186 |
ax_hist.axvline(sim_mean, color='red', linestyle='--', linewidth=2, label=f'Mean: {sim_mean:.2f}')
|
187 |
ax_hist.axvline(p5, color='green', linestyle=':', linewidth=2, label=f'5th Percentile (P5): {p5:.2f}')
|
188 |
ax_hist.axvline(p95, color='green', linestyle=':', linewidth=2, label=f'95th Percentile (P95): {p95:.2f}')
|
|
|
194 |
ax_hist.grid(True, linestyle='--', alpha=0.6)
|
195 |
plt.tight_layout()
|
196 |
|
|
|
197 |
fig_cdf, ax_cdf = plt.subplots(figsize=(8, 5))
|
198 |
sorted_results = np.sort(simulation_results)
|
199 |
yvals = np.arange(len(sorted_results)) / float(len(sorted_results) - 1)
|
200 |
ax_cdf.plot(sorted_results, yvals, label='CDF')
|
201 |
|
|
|
202 |
p50 = np.percentile(simulation_results, 50)
|
203 |
ax_cdf.plot(p5, 0.05, 'go', ms=8, label=f'P5: {p5:.2f}')
|
204 |
ax_cdf.plot(p50, 0.50, 'ro', ms=8, label=f'Median (P50): {p50:.2f}')
|
|
|
211 |
ax_cdf.legend()
|
212 |
plt.tight_layout()
|
213 |
|
|
|
214 |
prob_achieved = 0
|
215 |
if target_value is not None:
|
216 |
prob_achieved = np.sum(simulation_results <= target_value) / num_simulations * 100
|
|
|
238 |
def generate_explanation(results_summary):
|
239 |
"""
|
240 |
Uses a Hugging Face model to explain the simulation results in simple terms.
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
"""
|
242 |
if explanation_generator is None:
|
243 |
return "LLM model not loaded. Cannot generate explanation."
|
244 |
+
# **NEW**: More robust check for failed simulation runs.
|
245 |
+
if not results_summary or "Please process valid data" in results_summary or "Simulation failed" in results_summary:
|
246 |
+
return "Could not generate explanation. Please run a successful simulation first."
|
247 |
|
248 |
prompt = f"""
|
249 |
Explain the following Monte Carlo simulation results to a non-technical manager.
|
|
|
282 |
|
283 |
# --- Row 1: Data Input and Preparation ---
|
284 |
with gr.Row():
|
|
|
285 |
with gr.Column(scale=1):
|
286 |
+
with gr.Group():
|
287 |
gr.Markdown("### 1. Data Collection")
|
288 |
gr.Markdown("Choose **one** method below.")
|
289 |
|
|
|
301 |
|
302 |
prepare_button = gr.Button("Prepare Simulation", variant="secondary")
|
303 |
|
|
|
304 |
with gr.Column(scale=2):
|
305 |
+
with gr.Group():
|
306 |
gr.Markdown("### 2. Preparation & Visualization")
|
307 |
validation_output = gr.Textbox(label="Validation Status", interactive=False, lines=3)
|
308 |
input_stats_output = gr.Textbox(label="Input Data Statistics", interactive=False, lines=6)
|
|
|
310 |
|
311 |
# --- Row 2: Simulation Controls and Results ---
|
312 |
with gr.Row():
|
313 |
+
with gr.Group():
|
314 |
gr.Markdown("### 3. Simulation Run & Results")
|
315 |
with gr.Row():
|
316 |
with gr.Column(scale=1, min_width=250):
|
|
|
336 |
|
337 |
# --- Row 3: AI-Powered Explanation ---
|
338 |
with gr.Row():
|
339 |
+
with gr.Group():
|
340 |
gr.Markdown("### 4. AI-Powered Explanation")
|
341 |
explain_button = gr.Button("Explain the Takeaways", variant="secondary")
|
342 |
explanation_output = gr.Textbox(
|
|
|
350 |
# Define UI Component Interactions
|
351 |
# ----------------------------------------------------------------------------
|
352 |
|
|
|
353 |
processed_data_state = gr.State()
|
354 |
|
355 |
prepare_button.click(
|
|
|
374 |
# Launch the Gradio App
|
375 |
# ----------------------------------------------------------------------------
|
376 |
if __name__ == "__main__":
|
|
|
|
|
377 |
app.launch(debug=True)
|