Spaces:
Sleeping
Sleeping
| # ------------------------------------------------------------------------ | |
| # Grounding DINO | |
| # url: https://github.com/IDEA-Research/GroundingDINO | |
| # Copyright (c) 2023 IDEA. All Rights Reserved. | |
| # Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
| # ------------------------------------------------------------------------ | |
| # Conditional DETR | |
| # Copyright (c) 2021 Microsoft. All Rights Reserved. | |
| # Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
| # ------------------------------------------------------------------------ | |
| # Copied from DETR (https://github.com/facebookresearch/detr) | |
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
| # ------------------------------------------------------------------------ | |
| """ | |
| Backbone modules. | |
| """ | |
| from typing import Dict, List | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision | |
| from torch import nn | |
| from torchvision.models._utils import IntermediateLayerGetter | |
| from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process | |
| from .position_encoding import build_position_encoding | |
| from .swin_transformer import build_swin_transformer | |
| class FrozenBatchNorm2d(torch.nn.Module): | |
| """ | |
| BatchNorm2d where the batch statistics and the affine parameters are fixed. | |
| Copy-paste from torchvision.misc.ops with added eps before rqsrt, | |
| without which any other models than torchvision.models.resnet[18,34,50,101] | |
| produce nans. | |
| """ | |
| def __init__(self, n): | |
| super(FrozenBatchNorm2d, self).__init__() | |
| self.register_buffer("weight", torch.ones(n)) | |
| self.register_buffer("bias", torch.zeros(n)) | |
| self.register_buffer("running_mean", torch.zeros(n)) | |
| self.register_buffer("running_var", torch.ones(n)) | |
| def _load_from_state_dict( | |
| self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
| ): | |
| num_batches_tracked_key = prefix + "num_batches_tracked" | |
| if num_batches_tracked_key in state_dict: | |
| del state_dict[num_batches_tracked_key] | |
| super(FrozenBatchNorm2d, self)._load_from_state_dict( | |
| state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs | |
| ) | |
| def forward(self, x): | |
| # move reshapes to the beginning | |
| # to make it fuser-friendly | |
| w = self.weight.reshape(1, -1, 1, 1) | |
| b = self.bias.reshape(1, -1, 1, 1) | |
| rv = self.running_var.reshape(1, -1, 1, 1) | |
| rm = self.running_mean.reshape(1, -1, 1, 1) | |
| eps = 1e-5 | |
| scale = w * (rv + eps).rsqrt() | |
| bias = b - rm * scale | |
| return x * scale + bias | |
| class BackboneBase(nn.Module): | |
| def __init__( | |
| self, | |
| backbone: nn.Module, | |
| train_backbone: bool, | |
| num_channels: int, | |
| return_interm_indices: list, | |
| ): | |
| super().__init__() | |
| for name, parameter in backbone.named_parameters(): | |
| if ( | |
| not train_backbone | |
| or "layer2" not in name | |
| and "layer3" not in name | |
| and "layer4" not in name | |
| ): | |
| parameter.requires_grad_(False) | |
| return_layers = {} | |
| for idx, layer_index in enumerate(return_interm_indices): | |
| return_layers.update( | |
| {"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)} | |
| ) | |
| # if len: | |
| # if use_stage1_feature: | |
| # return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"} | |
| # else: | |
| # return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"} | |
| # else: | |
| # return_layers = {'layer4': "0"} | |
| self.body = IntermediateLayerGetter(backbone, return_layers=return_layers) | |
| self.num_channels = num_channels | |
| def forward(self, tensor_list: NestedTensor): | |
| xs = self.body(tensor_list.tensors) | |
| out: Dict[str, NestedTensor] = {} | |
| for name, x in xs.items(): | |
| m = tensor_list.mask | |
| assert m is not None | |
| mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0] | |
| out[name] = NestedTensor(x, mask) | |
| # import ipdb; ipdb.set_trace() | |
| return out | |
| class Backbone(BackboneBase): | |
| """ResNet backbone with frozen BatchNorm.""" | |
| def __init__( | |
| self, | |
| name: str, | |
| train_backbone: bool, | |
| dilation: bool, | |
| return_interm_indices: list, | |
| batch_norm=FrozenBatchNorm2d, | |
| ): | |
| if name in ["resnet18", "resnet34", "resnet50", "resnet101"]: | |
| backbone = getattr(torchvision.models, name)( | |
| replace_stride_with_dilation=[False, False, dilation], | |
| pretrained=is_main_process(), | |
| norm_layer=batch_norm, | |
| ) | |
| else: | |
| raise NotImplementedError("Why you can get here with name {}".format(name)) | |
| # num_channels = 512 if name in ('resnet18', 'resnet34') else 2048 | |
| assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available." | |
| assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] | |
| num_channels_all = [256, 512, 1024, 2048] | |
| num_channels = num_channels_all[4 - len(return_interm_indices) :] | |
| super().__init__(backbone, train_backbone, num_channels, return_interm_indices) | |
| class Joiner(nn.Sequential): | |
| def __init__(self, backbone, position_embedding): | |
| super().__init__(backbone, position_embedding) | |
| def forward(self, tensor_list: NestedTensor): | |
| xs = self[0](tensor_list) | |
| out: List[NestedTensor] = [] | |
| pos = [] | |
| for name, x in xs.items(): | |
| out.append(x) | |
| # position encoding | |
| pos.append(self[1](x).to(x.tensors.dtype)) | |
| return out, pos | |
| def build_backbone(args): | |
| """ | |
| Useful args: | |
| - backbone: backbone name | |
| - lr_backbone: | |
| - dilation | |
| - return_interm_indices: available: [0,1,2,3], [1,2,3], [3] | |
| - backbone_freeze_keywords: | |
| - use_checkpoint: for swin only for now | |
| """ | |
| position_embedding = build_position_encoding(args) | |
| train_backbone = True | |
| if not train_backbone: | |
| raise ValueError("Please set lr_backbone > 0") | |
| return_interm_indices = args.return_interm_indices | |
| assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]] | |
| args.backbone_freeze_keywords | |
| use_checkpoint = getattr(args, "use_checkpoint", False) | |
| if args.backbone in ["resnet50", "resnet101"]: | |
| backbone = Backbone( | |
| args.backbone, | |
| train_backbone, | |
| args.dilation, | |
| return_interm_indices, | |
| batch_norm=FrozenBatchNorm2d, | |
| ) | |
| bb_num_channels = backbone.num_channels | |
| elif args.backbone in [ | |
| "swin_T_224_1k", | |
| "swin_B_224_22k", | |
| "swin_B_384_22k", | |
| "swin_L_224_22k", | |
| "swin_L_384_22k", | |
| ]: | |
| pretrain_img_size = int(args.backbone.split("_")[-2]) | |
| backbone = build_swin_transformer( | |
| args.backbone, | |
| pretrain_img_size=pretrain_img_size, | |
| out_indices=tuple(return_interm_indices), | |
| dilation=False, | |
| use_checkpoint=use_checkpoint, | |
| ) | |
| bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :] | |
| else: | |
| raise NotImplementedError("Unknown backbone {}".format(args.backbone)) | |
| assert len(bb_num_channels) == len( | |
| return_interm_indices | |
| ), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}" | |
| model = Joiner(backbone, position_embedding) | |
| model.num_channels = bb_num_channels | |
| assert isinstance( | |
| bb_num_channels, List | |
| ), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels)) | |
| # import ipdb; ipdb.set_trace() | |
| return model | |