Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 6 |
+
import os
|
| 7 |
+
from threading import Thread
|
| 8 |
+
|
| 9 |
+
import pymupdf
|
| 10 |
+
import docx
|
| 11 |
+
from pptx import Presentation
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
MODEL_LIST = ["nikravan/glm_4vq"]
|
| 15 |
+
#MODEL_LIST = ["../Model_4b_sharded"]
|
| 16 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 17 |
+
MODEL_ID = MODEL_LIST[0]
|
| 18 |
+
MODEL_NAME = "GLM-4vq"
|
| 19 |
+
|
| 20 |
+
TITLE = "<h1>3ML-bot</h1>"
|
| 21 |
+
|
| 22 |
+
DESCRIPTION = f"""
|
| 23 |
+
<center>
|
| 24 |
+
<p>😊 A Multi-Modal Multi-Lingual(3ML) Chat.
|
| 25 |
+
<br>
|
| 26 |
+
🚀 MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a>
|
| 27 |
+
</center>"""
|
| 28 |
+
|
| 29 |
+
CSS = """
|
| 30 |
+
h1 {
|
| 31 |
+
text-align: center;
|
| 32 |
+
display: block;
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 37 |
+
MODEL_ID,
|
| 38 |
+
torch_dtype=torch.bfloat16,
|
| 39 |
+
low_cpu_mem_usage=True,
|
| 40 |
+
trust_remote_code=True
|
| 41 |
+
)
|
| 42 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
|
| 43 |
+
model.eval()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def extract_text(path):
|
| 47 |
+
return open(path, 'r').read()
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def extract_pdf(path):
|
| 51 |
+
doc = pymupdf.open(path)
|
| 52 |
+
text = ""
|
| 53 |
+
for page in doc:
|
| 54 |
+
text += page.get_text()
|
| 55 |
+
return text
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def extract_docx(path):
|
| 59 |
+
doc = docx.Document(path)
|
| 60 |
+
data = []
|
| 61 |
+
for paragraph in doc.paragraphs:
|
| 62 |
+
data.append(paragraph.text)
|
| 63 |
+
content = '\n\n'.join(data)
|
| 64 |
+
return content
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def extract_pptx(path):
|
| 68 |
+
prs = Presentation(path)
|
| 69 |
+
text = ""
|
| 70 |
+
for slide in prs.slides:
|
| 71 |
+
for shape in slide.shapes:
|
| 72 |
+
if hasattr(shape, "text"):
|
| 73 |
+
text += shape.text + "\n"
|
| 74 |
+
return text
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def mode_load(path):
|
| 78 |
+
choice = ""
|
| 79 |
+
file_type = path.split(".")[-1]
|
| 80 |
+
print(file_type)
|
| 81 |
+
if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
|
| 82 |
+
if file_type.endswith("pdf"):
|
| 83 |
+
content = extract_pdf(path)
|
| 84 |
+
elif file_type.endswith("docx"):
|
| 85 |
+
content = extract_docx(path)
|
| 86 |
+
elif file_type.endswith("pptx"):
|
| 87 |
+
content = extract_pptx(path)
|
| 88 |
+
else:
|
| 89 |
+
content = extract_text(path)
|
| 90 |
+
choice = "doc"
|
| 91 |
+
print(content[:100])
|
| 92 |
+
return choice, content[:5000]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
|
| 96 |
+
content = Image.open(path).convert('RGB')
|
| 97 |
+
choice = "image"
|
| 98 |
+
return choice, content
|
| 99 |
+
|
| 100 |
+
else:
|
| 101 |
+
raise gr.Error("Oops, unsupported files.")
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@spaces.GPU()
|
| 105 |
+
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
|
| 106 |
+
print(f'message is - {message}')
|
| 107 |
+
print(f'history is - {history}')
|
| 108 |
+
conversation = []
|
| 109 |
+
prompt_files = []
|
| 110 |
+
if message["files"]:
|
| 111 |
+
choice, contents = mode_load(message["files"][-1])
|
| 112 |
+
if choice == "image":
|
| 113 |
+
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
| 114 |
+
elif choice == "doc":
|
| 115 |
+
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
|
| 116 |
+
conversation.append({"role": "user", "content": format_msg})
|
| 117 |
+
else:
|
| 118 |
+
if len(history) == 0:
|
| 119 |
+
# raise gr.Error("Please upload an image first.")
|
| 120 |
+
contents = None
|
| 121 |
+
conversation.append({"role": "user", "content": message['text']})
|
| 122 |
+
else:
|
| 123 |
+
# image = Image.open(history[0][0][0])
|
| 124 |
+
for prompt, answer in history:
|
| 125 |
+
if answer is None:
|
| 126 |
+
prompt_files.append(prompt[0])
|
| 127 |
+
conversation.extend([{"role": "user", "content": ""}, {"role": "assistant", "content": ""}])
|
| 128 |
+
else:
|
| 129 |
+
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
|
| 130 |
+
if len(prompt_files) > 0:
|
| 131 |
+
choice, contents = mode_load(prompt_files[-1])
|
| 132 |
+
else:
|
| 133 |
+
choice = ""
|
| 134 |
+
conversation.append({"role": "user", "image": "", "content": message['text']})
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
if choice == "image":
|
| 138 |
+
conversation.append({"role": "user", "image": contents, "content": message['text']})
|
| 139 |
+
elif choice == "doc":
|
| 140 |
+
format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
|
| 141 |
+
conversation.append({"role": "user", "content": format_msg})
|
| 142 |
+
print(f"Conversation is -\n{conversation}")
|
| 143 |
+
|
| 144 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True,
|
| 145 |
+
return_tensors="pt", return_dict=True).to(model.device)
|
| 146 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
| 147 |
+
|
| 148 |
+
generate_kwargs = dict(
|
| 149 |
+
max_length=max_length,
|
| 150 |
+
streamer=streamer,
|
| 151 |
+
do_sample=True,
|
| 152 |
+
top_p=top_p,
|
| 153 |
+
top_k=top_k,
|
| 154 |
+
temperature=temperature,
|
| 155 |
+
repetition_penalty=penalty,
|
| 156 |
+
eos_token_id=[151329, 151336, 151338],
|
| 157 |
+
)
|
| 158 |
+
gen_kwargs = {**input_ids, **generate_kwargs}
|
| 159 |
+
|
| 160 |
+
with torch.no_grad():
|
| 161 |
+
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
| 162 |
+
thread.start()
|
| 163 |
+
buffer = ""
|
| 164 |
+
for new_text in streamer:
|
| 165 |
+
buffer += new_text
|
| 166 |
+
yield buffer
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
chatbot = gr.Chatbot(
|
| 170 |
+
#rtl=True,
|
| 171 |
+
)
|
| 172 |
+
chat_input = gr.MultimodalTextbox(
|
| 173 |
+
interactive=True,
|
| 174 |
+
placeholder="Enter message or upload a file ...",
|
| 175 |
+
show_label=False,
|
| 176 |
+
#rtl=True,
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
)
|
| 181 |
+
EXAMPLES = [
|
| 182 |
+
[{"text": "Write a poem about spring season in French Language", }],
|
| 183 |
+
[{"text": "what does this chart mean?", "files": ["sales.png"]}],
|
| 184 |
+
[{"text": "¿Qué está escrito a mano en esta foto?", "files": ["receipt1.png"]}],
|
| 185 |
+
[{"text": "در مورد این عکس توضیح بده و بگو این چه فصلی می تواند باشد", "files": ["nature.jpg"]}]
|
| 186 |
+
]
|
| 187 |
+
|
| 188 |
+
with gr.Blocks(css=CSS, theme="soft", fill_height=True) as demo:
|
| 189 |
+
gr.HTML(TITLE)
|
| 190 |
+
gr.HTML(DESCRIPTION)
|
| 191 |
+
gr.ChatInterface(
|
| 192 |
+
fn=stream_chat,
|
| 193 |
+
multimodal=True,
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
textbox=chat_input,
|
| 197 |
+
chatbot=chatbot,
|
| 198 |
+
fill_height=True,
|
| 199 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 200 |
+
additional_inputs=[
|
| 201 |
+
gr.Slider(
|
| 202 |
+
minimum=0,
|
| 203 |
+
maximum=1,
|
| 204 |
+
step=0.1,
|
| 205 |
+
value=0.8,
|
| 206 |
+
label="Temperature",
|
| 207 |
+
render=False,
|
| 208 |
+
),
|
| 209 |
+
gr.Slider(
|
| 210 |
+
minimum=1024,
|
| 211 |
+
maximum=8192,
|
| 212 |
+
step=1,
|
| 213 |
+
value=4096,
|
| 214 |
+
label="Max Length",
|
| 215 |
+
render=False,
|
| 216 |
+
),
|
| 217 |
+
gr.Slider(
|
| 218 |
+
minimum=0.0,
|
| 219 |
+
maximum=1.0,
|
| 220 |
+
step=0.1,
|
| 221 |
+
value=1.0,
|
| 222 |
+
label="top_p",
|
| 223 |
+
render=False,
|
| 224 |
+
),
|
| 225 |
+
gr.Slider(
|
| 226 |
+
minimum=1,
|
| 227 |
+
maximum=20,
|
| 228 |
+
step=1,
|
| 229 |
+
value=10,
|
| 230 |
+
label="top_k",
|
| 231 |
+
render=False,
|
| 232 |
+
),
|
| 233 |
+
gr.Slider(
|
| 234 |
+
minimum=0.0,
|
| 235 |
+
maximum=2.0,
|
| 236 |
+
step=0.1,
|
| 237 |
+
value=1.0,
|
| 238 |
+
label="Repetition penalty",
|
| 239 |
+
render=False,
|
| 240 |
+
),
|
| 241 |
+
],
|
| 242 |
+
),
|
| 243 |
+
gr.Examples(EXAMPLES, [chat_input])
|
| 244 |
+
|
| 245 |
+
if __name__ == "__main__":
|
| 246 |
+
demo.queue(api_open=False).launch(show_api=False, share=True, )#server_name="0.0.0.0", )
|