Spaces:
Sleeping
Sleeping
Create intent_classifier.py
Browse files- intent_classifier.py +16 -0
intent_classifier.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class IntentClassifier:
|
| 5 |
+
def __init__(self):
|
| 6 |
+
self.model_name = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 7 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(self.model_name, num_labels=2)
|
| 8 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 9 |
+
self.intents = {0: "database_query", 1: "product_description"}
|
| 10 |
+
|
| 11 |
+
def classify(self, query):
|
| 12 |
+
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True)
|
| 13 |
+
outputs = self.model(**inputs)
|
| 14 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 15 |
+
predicted_class = torch.argmax(probabilities).item()
|
| 16 |
+
return self.intents[predicted_class], probabilities[0][predicted_class].item()
|