Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import RobertaForQuestionAnswering
|
3 |
+
from transformers import BertForQuestionAnswering
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
|
6 |
+
model1 = RobertaForQuestionAnswering.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large")
|
7 |
+
tokenizer1 = AutoTokenizer.from_pretrained("pedramyazdipoor/persian_xlm_roberta_large")
|
8 |
+
|
9 |
+
roberta_large = pipeline(task='question-answering', model=model1, tokenizer=tokenizer1)
|
10 |
+
|
11 |
+
def Q_A(contetx, question):
|
12 |
+
answer_pedram = roberta_large({"question":question, "context":context})['answer']
|
13 |
+
return answer_pedram
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
# Create title, description and article strings
|
18 |
+
title = "Question and answer based on Roberta model"
|
19 |
+
description = "سیستم پردازش زبانی پرسش و پاسخ"
|
20 |
+
article = "آموزش داده شده با مدل زبانی روبرتا"
|
21 |
+
|
22 |
+
|
23 |
+
demo = gr.Interface(fn=Q_A, # mapping function from input to output
|
24 |
+
inputs=[gr.Textbox(label='پرسش خوذ را وارد کنید:', show_label=True, text_align='right'),
|
25 |
+
gr.Textbox(label='متن منبع خود را وارد کنید', show_label=True, text_align='right')], # what are the inputs?
|
26 |
+
outputs=gr.Text(), # what are the outputs?
|
27 |
+
# our fn has two outputs, therefore we have two outputs
|
28 |
+
# Create examples list from "examples/" directory
|
29 |
+
title=title,
|
30 |
+
description=description,
|
31 |
+
article=article)
|
32 |
+
|
33 |
+
# Launch the demo!
|
34 |
+
demo.launch(share=True)
|