Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +16 -24
api_server.py
CHANGED
@@ -74,7 +74,21 @@ def predict():
|
|
74 |
# 檢查 YOLO 是否返回了有效的結果
|
75 |
if results is None or len(results) == 0:
|
76 |
return jsonify({'error': 'No results from YOLO model'}), 400
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
saved_images = []
|
79 |
|
80 |
# 儲存辨識後的圖片到指定資料夾
|
@@ -100,31 +114,9 @@ def predict():
|
|
100 |
'saved_images': saved_images,
|
101 |
'inference_time': inference_time
|
102 |
}), 200
|
|
|
103 |
|
104 |
|
105 |
-
|
106 |
-
# # Process the YOLO output
|
107 |
-
# detections = []
|
108 |
-
# for det in results.xyxy[0]: # Assuming results are in xyxy format (xmin, ymin, xmax, ymax, confidence, class)
|
109 |
-
# x_min, y_min, x_max, y_max, confidence, class_idx = det
|
110 |
-
# width = x_max - x_min
|
111 |
-
# height = y_max - y_min
|
112 |
-
# detection = {
|
113 |
-
# "label": int(class_idx),
|
114 |
-
# "confidence": float(confidence),
|
115 |
-
# "bbox": [float(x_min), float(y_min), float(width), float(height)]
|
116 |
-
# }
|
117 |
-
# detections.append(detection)
|
118 |
-
|
119 |
-
# # Calculate latency in milliseconds
|
120 |
-
# latency_ms = (time.time() - start_time) * 1000
|
121 |
-
|
122 |
-
# # Return the detection results and latency as JSON response
|
123 |
-
# response = {
|
124 |
-
# 'detections': detections,
|
125 |
-
# 'ml-latency-ms': round(latency_ms, 4)
|
126 |
-
# }
|
127 |
-
|
128 |
# # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
129 |
# # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
130 |
# # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|
|
|
74 |
# 檢查 YOLO 是否返回了有效的結果
|
75 |
if results is None or len(results) == 0:
|
76 |
return jsonify({'error': 'No results from YOLO model'}), 400
|
77 |
+
|
78 |
+
# 渲染推理結果到圖像
|
79 |
+
img_with_boxes = results[0].plot() # 使用 results[0],假設只有一張圖像作推理
|
80 |
+
|
81 |
+
# 將 numpy array 轉換為 PIL Image
|
82 |
+
img = Image.fromarray(img_with_boxes)
|
83 |
+
|
84 |
+
# 儲存圖片到內存緩衝區
|
85 |
+
img_io = io.BytesIO()
|
86 |
+
img.save(img_io, 'PNG')
|
87 |
+
img_io.seek(0)
|
88 |
+
|
89 |
+
# 返回處理後的圖像
|
90 |
+
return send_file(img_io, mimetype='image/png')
|
91 |
+
'''
|
92 |
saved_images = []
|
93 |
|
94 |
# 儲存辨識後的圖片到指定資料夾
|
|
|
114 |
'saved_images': saved_images,
|
115 |
'inference_time': inference_time
|
116 |
}), 200
|
117 |
+
'''
|
118 |
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
# # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
121 |
# # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
122 |
# # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|