Spaces:
Sleeping
Sleeping
Upload clip.py
Browse files
clip.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
|
5 |
+
|
6 |
+
def clip_result(image_path):
|
7 |
+
# 設置設備
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Get the directory where this script is located
|
11 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
+
|
13 |
+
# Construct the full path to the file in the subfolder
|
14 |
+
model_path = os.path.join(script_dir, 'model', 'best_clip_model.pth')
|
15 |
+
|
16 |
+
# 載入訓練好的模型和處理器
|
17 |
+
model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
18 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
19 |
+
model = model.to(device)
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
23 |
+
|
24 |
+
# 1. 加載圖片
|
25 |
+
# image_path = '/content/drive/MyDrive/幽靈吉伊卡哇.png'
|
26 |
+
image = Image.open(image_path)
|
27 |
+
|
28 |
+
# 2. 加載中文詞彙表
|
29 |
+
with open('/content/drive/MyDrive/chiikawa/word_list.txt', 'r', encoding='utf-8') as f:
|
30 |
+
vocab = [line.strip() for line in f.readlines()]
|
31 |
+
|
32 |
+
# 3. 圖像和文本處理
|
33 |
+
batch_size = 16 # 每次處理16個詞彙
|
34 |
+
similarities = []
|
35 |
+
|
36 |
+
# 釋放未使用的顯存
|
37 |
+
torch.cuda.empty_cache()
|
38 |
+
|
39 |
+
with torch.no_grad():
|
40 |
+
for i in range(0, len(vocab), batch_size):
|
41 |
+
batch_vocab = vocab[i:i + batch_size]
|
42 |
+
inputs = processor(
|
43 |
+
text=batch_vocab,
|
44 |
+
images=image,
|
45 |
+
return_tensors="pt",
|
46 |
+
padding=True
|
47 |
+
).to(device)
|
48 |
+
|
49 |
+
# 推理並進行相似度計算
|
50 |
+
outputs = model(**inputs)
|
51 |
+
image_embeds = outputs.image_embeds / outputs.image_embeds.norm(dim=-1, keepdim=True)
|
52 |
+
text_embeds = outputs.text_embeds / outputs.text_embeds.norm(dim=-1, keepdim=True)
|
53 |
+
similarity = torch.matmul(image_embeds, text_embeds.T).squeeze(0)
|
54 |
+
similarities.append(similarity)
|
55 |
+
|
56 |
+
# 4. 合併所有相似度
|
57 |
+
similarity = torch.cat(similarities, dim=0)
|
58 |
+
|
59 |
+
# 5. 找到相似度最高的詞彙
|
60 |
+
top_k = 3
|
61 |
+
top_k_indices = torch.topk(similarity, top_k).indices.tolist()
|
62 |
+
top_k_words = [vocab[idx] for idx in top_k_indices]
|
63 |
+
|
64 |
+
# 6. 輸出最接近的前3名中文詞彙
|
65 |
+
|
66 |
+
print("最接近的前3名中文詞彙是:")
|
67 |
+
for rank, word in enumerate(top_k_words, 1):
|
68 |
+
print(f"{rank}. {word}")
|
69 |
+
|
70 |
+
return top_k_words
|