Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +64 -33
api_server.py
CHANGED
@@ -8,14 +8,14 @@ from ultralytics import YOLO
|
|
8 |
import io
|
9 |
import base64
|
10 |
import uuid
|
11 |
-
|
12 |
-
# Disable tensorflow warnings
|
13 |
-
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
14 |
-
|
15 |
from tensorflow import keras
|
16 |
from flask import Flask, jsonify, request, render_template, send_file
|
17 |
import torch
|
18 |
|
|
|
|
|
|
|
19 |
load_type = 'local'
|
20 |
|
21 |
MODEL_NAME = "yolo11_detect_best_241018_1.pt"
|
@@ -50,12 +50,29 @@ else:
|
|
50 |
raise AssertionError('No load type is specified!')
|
51 |
|
52 |
|
|
|
53 |
def image_to_base64(image_path):
|
54 |
with open(image_path, "rb") as image_file:
|
55 |
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
56 |
return encoded_string
|
57 |
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Initialize the Flask application
|
60 |
app = Flask(__name__)
|
61 |
|
@@ -65,18 +82,13 @@ app = Flask(__name__)
|
|
65 |
def predict():
|
66 |
|
67 |
user_id = request.args.get('user_id')
|
68 |
-
|
69 |
-
# 生成一個唯一的 message_id
|
70 |
-
message_id = str(uuid.uuid4())
|
71 |
|
72 |
if 'image' not in request.files:
|
73 |
# Handle if no file is selected
|
74 |
return 'No file selected'
|
75 |
|
76 |
-
start_time = time.time()
|
77 |
-
|
78 |
-
file = request.files['image']
|
79 |
-
|
80 |
# 讀取圖像
|
81 |
try:
|
82 |
image_data = Image.open(file)
|
@@ -90,20 +102,6 @@ def predict():
|
|
90 |
if results is None or len(results) == 0:
|
91 |
return jsonify({'error': 'No results from YOLO model'}), 400
|
92 |
|
93 |
-
# # 渲染推理結果到圖像
|
94 |
-
# img_with_boxes = results[0].plot() # 使用 results[0],假設只有一張圖像作推理
|
95 |
-
|
96 |
-
# # 將 numpy array 轉換為 PIL Image
|
97 |
-
# img = Image.fromarray(img_with_boxes)
|
98 |
-
|
99 |
-
# # 儲存圖片到內存緩衝區
|
100 |
-
# img_io = io.BytesIO()
|
101 |
-
# img.save(img_io, 'PNG')
|
102 |
-
# img_io.seek(0)
|
103 |
-
|
104 |
-
# # 返回處理後的圖像
|
105 |
-
# return send_file(img_io, mimetype='image/png')
|
106 |
-
|
107 |
saved_images = []
|
108 |
|
109 |
# 儲存辨識後的圖片到指定資料夾
|
@@ -115,22 +113,55 @@ def predict():
|
|
115 |
labels = result.boxes.cls # Get predicted label IDs
|
116 |
label_names = [model.names[int(label)] for label in labels] # Convert to names
|
117 |
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
# 建立回應資料
|
126 |
response_data = {
|
127 |
'message_id': message_id,
|
128 |
'images': encoded_images,
|
129 |
-
'description':
|
130 |
}
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
|
|
|
|
133 |
|
|
|
134 |
# # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
135 |
# # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
136 |
# # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|
|
|
8 |
import io
|
9 |
import base64
|
10 |
import uuid
|
11 |
+
import glob
|
|
|
|
|
|
|
12 |
from tensorflow import keras
|
13 |
from flask import Flask, jsonify, request, render_template, send_file
|
14 |
import torch
|
15 |
|
16 |
+
# Disable tensorflow warnings
|
17 |
+
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
18 |
+
|
19 |
load_type = 'local'
|
20 |
|
21 |
MODEL_NAME = "yolo11_detect_best_241018_1.pt"
|
|
|
50 |
raise AssertionError('No load type is specified!')
|
51 |
|
52 |
|
53 |
+
# image to base64
|
54 |
def image_to_base64(image_path):
|
55 |
with open(image_path, "rb") as image_file:
|
56 |
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
57 |
return encoded_string
|
58 |
|
59 |
|
60 |
+
# 抓取指定路徑下的所有 JPG 檔案
|
61 |
+
def get_jpg_files(path):
|
62 |
+
"""
|
63 |
+
Args:
|
64 |
+
path: 要搜尋的目錄路徑。
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
一個包含所有 JPG 檔案路徑的列表。
|
68 |
+
"""
|
69 |
+
return glob.glob(os.path.join(path, "*.jpg"))
|
70 |
+
|
71 |
+
# 使用範例
|
72 |
+
image_folder = '/content/drive/MyDrive/chiikawa' # 替換成你的目錄路徑
|
73 |
+
jpg_files = get_jpg_files(image_folder)
|
74 |
+
|
75 |
+
|
76 |
# Initialize the Flask application
|
77 |
app = Flask(__name__)
|
78 |
|
|
|
82 |
def predict():
|
83 |
|
84 |
user_id = request.args.get('user_id')
|
85 |
+
file = request.files['image']
|
86 |
+
message_id = str(uuid.uuid4()) # 生成一個唯一的 message_id
|
|
|
87 |
|
88 |
if 'image' not in request.files:
|
89 |
# Handle if no file is selected
|
90 |
return 'No file selected'
|
91 |
|
|
|
|
|
|
|
|
|
92 |
# 讀取圖像
|
93 |
try:
|
94 |
image_data = Image.open(file)
|
|
|
102 |
if results is None or len(results) == 0:
|
103 |
return jsonify({'error': 'No results from YOLO model'}), 400
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
saved_images = []
|
106 |
|
107 |
# 儲存辨識後的圖片到指定資料夾
|
|
|
113 |
labels = result.boxes.cls # Get predicted label IDs
|
114 |
label_names = [model.names[int(label)] for label in labels] # Convert to names
|
115 |
|
116 |
+
element_counts = Counter(my_list)
|
117 |
|
118 |
+
encoded_images=[]
|
119 |
+
element_list =[]
|
120 |
+
|
121 |
+
for element, count in element_counts.items():
|
122 |
+
if element_counts[element] > 1: #某隻角色的數量>1
|
123 |
+
output_path = f"{YOLO_DIR}/{message_id}/{element}"
|
124 |
+
output_file = get_jpg_files(output_path)
|
125 |
+
element_list.append(element)
|
126 |
+
|
127 |
+
for output_img in output_file: # 取得每張圖的路徑
|
128 |
+
encoded_images.append(image_to_base64(output_img))
|
129 |
+
|
130 |
+
else : #某隻角色的數量=1
|
131 |
+
output_path = f"{YOLO_DIR}/{message_id}/{element}/im.jpg.jpg"
|
132 |
+
encoded_images.append(image_to_base64(output_path))
|
133 |
+
element_list.append(element)
|
134 |
+
|
135 |
# 建立回應資料
|
136 |
response_data = {
|
137 |
'message_id': message_id,
|
138 |
'images': encoded_images,
|
139 |
+
'description': element_list
|
140 |
}
|
141 |
+
|
142 |
+
return jsonify(response_data)
|
143 |
+
|
144 |
+
# for label_name in label_names:
|
145 |
+
# output_file=f"{YOLO_DIR}/{message_id}/{label_name}/im.jpg.jpg"
|
146 |
+
# # 將圖片轉換為 base64 編碼
|
147 |
+
# encoded_images.append(image_to_base64(output_file))
|
148 |
+
|
149 |
+
|
150 |
+
# # 渲染推理結果到圖像
|
151 |
+
# img_with_boxes = results[0].plot() # 使用 results[0],假設只有一張圖像作推理
|
152 |
+
|
153 |
+
# # 將 numpy array 轉換為 PIL Image
|
154 |
+
# img = Image.fromarray(img_with_boxes)
|
155 |
+
|
156 |
+
# # 儲存圖片到內存緩衝區
|
157 |
+
# img_io = io.BytesIO()
|
158 |
+
# img.save(img_io, 'PNG')
|
159 |
+
# img_io.seek(0)
|
160 |
|
161 |
+
# # 返回處理後的圖像
|
162 |
+
# return send_file(img_io, mimetype='image/png')
|
163 |
|
164 |
+
|
165 |
# # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
166 |
# # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
167 |
# # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|