Spaces:
Sleeping
Sleeping
Update clip.py
Browse files
clip.py
CHANGED
@@ -3,70 +3,61 @@ import torch
|
|
3 |
from PIL import Image
|
4 |
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Get the directory where this script is located
|
11 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
-
|
13 |
-
# Construct the full path to the file in the subfolder
|
14 |
-
model_path = os.path.join(script_dir, 'artifacts/models', 'best_clip_model.pth')
|
15 |
-
|
16 |
-
print("model_path:", model_path)
|
17 |
-
|
18 |
-
# 載入訓練好的模型和處理器
|
19 |
-
model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
20 |
-
model.load_state_dict(torch.load(model_path, map_location=device))
|
21 |
-
model = model.to(device)
|
22 |
-
model.eval()
|
23 |
-
|
24 |
-
processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
|
25 |
-
|
26 |
-
# 1. 加載圖片
|
27 |
-
# image_path = '/content/drive/MyDrive/幽靈吉伊卡哇.png'
|
28 |
-
image = Image.open(image_path)
|
29 |
-
|
30 |
-
# 2. 加載中文詞彙表
|
31 |
-
with open('./chiikawa/word_list.txt', 'r', encoding='utf-8') as f:
|
32 |
-
vocab = [line.strip() for line in f.readlines()]
|
33 |
-
|
34 |
-
# 3. 圖像和文本處理
|
35 |
-
batch_size = 16 # 每次處理16個詞彙
|
36 |
-
similarities = []
|
37 |
-
|
38 |
-
# 釋放未使用的顯存
|
39 |
-
torch.cuda.empty_cache()
|
40 |
-
|
41 |
-
with torch.no_grad():
|
42 |
-
for i in range(0, len(vocab), batch_size):
|
43 |
-
batch_vocab = vocab[i:i + batch_size]
|
44 |
-
inputs = processor(
|
45 |
-
text=batch_vocab,
|
46 |
-
images=image,
|
47 |
-
return_tensors="pt",
|
48 |
-
padding=True
|
49 |
-
).to(device)
|
50 |
-
|
51 |
-
# 推理並進行相似度計算
|
52 |
-
outputs = model(**inputs)
|
53 |
-
image_embeds = outputs.image_embeds / outputs.image_embeds.norm(dim=-1, keepdim=True)
|
54 |
-
text_embeds = outputs.text_embeds / outputs.text_embeds.norm(dim=-1, keepdim=True)
|
55 |
-
similarity = torch.matmul(image_embeds, text_embeds.T).squeeze(0)
|
56 |
-
similarities.append(similarity)
|
57 |
-
|
58 |
-
# 4. 合併所有相似度
|
59 |
-
similarity = torch.cat(similarities, dim=0)
|
60 |
-
|
61 |
-
# 5. 找到相似度最高的詞彙
|
62 |
-
top_k = 3
|
63 |
-
top_k_indices = torch.topk(similarity, top_k).indices.tolist()
|
64 |
-
top_k_words = [vocab[idx] for idx in top_k_indices]
|
65 |
-
|
66 |
-
# 6. 輸出最接近的前3名中文詞彙
|
67 |
-
|
68 |
-
# print("最接近的前3名中文詞彙是:")
|
69 |
-
# for rank, word in enumerate(top_k_words, 1):
|
70 |
-
# print(f"{rank}. {word}")
|
71 |
-
|
72 |
-
return top_k_words
|
|
|
3 |
from PIL import Image
|
4 |
from transformers import ChineseCLIPProcessor, ChineseCLIPModel
|
5 |
|
6 |
+
class ClipModel:
|
7 |
+
def __init__(self, model_name="OFA-Sys/chinese-clip-vit-base-patch16", model_path=None):
|
8 |
+
# Set device
|
9 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
# Load model and processor
|
12 |
+
self.model = ChineseCLIPModel.from_pretrained(model_name)
|
13 |
+
if model_path is None:
|
14 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
15 |
+
model_path = os.path.join(script_dir, 'artifacts/models', 'best_clip_model.pth')
|
16 |
+
self.model.load_state_dict(torch.load(model_path, map_location=self.device))
|
17 |
+
self.model = self.model.to(self.device)
|
18 |
+
self.model.eval()
|
19 |
+
|
20 |
+
self.processor = ChineseCLIPProcessor.from_pretrained(model_name)
|
21 |
+
|
22 |
+
def clip_result(self, image_path, vocab_path='./chiikawa/word_list.txt', top_k=3):
|
23 |
+
# Load image
|
24 |
+
image = Image.open(image_path)
|
25 |
+
|
26 |
+
# Load Chinese vocabulary
|
27 |
+
with open(vocab_path, 'r', encoding='utf-8') as f:
|
28 |
+
vocab = [line.strip() for line in f.readlines()]
|
29 |
+
|
30 |
+
# Process images and texts
|
31 |
+
batch_size = 16 # Process 16 vocab at a time
|
32 |
+
similarities = []
|
33 |
+
|
34 |
+
# Release unused memory
|
35 |
+
torch.cuda.empty_cache()
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
for i in range(0, len(vocab), batch_size):
|
39 |
+
batch_vocab = vocab[i:i + batch_size]
|
40 |
+
inputs = self.processor(
|
41 |
+
text=batch_vocab,
|
42 |
+
images=image,
|
43 |
+
return_tensors="pt",
|
44 |
+
padding=True
|
45 |
+
).to(self.device)
|
46 |
+
|
47 |
+
# Inference and similarity calculation
|
48 |
+
outputs = self.model(**inputs)
|
49 |
+
image_embeds = outputs.image_embeds / outputs.image_embeds.norm(dim=-1, keepdim=True)
|
50 |
+
text_embeds = outputs.text_embeds / outputs.text_embeds.norm(dim=-1, keepdim=True)
|
51 |
+
similarity = torch.matmul(image_embeds, text_embeds.T).squeeze(0)
|
52 |
+
similarities.append(similarity)
|
53 |
+
|
54 |
+
# Merge all similarities
|
55 |
+
similarity = torch.cat(similarities, dim=0)
|
56 |
+
|
57 |
+
# Find top-3 similarities
|
58 |
+
top_k_indices = torch.topk(similarity, top_k).indices.tolist()
|
59 |
+
top_k_words = [vocab[idx] for idx in top_k_indices]
|
60 |
+
|
61 |
+
# 6. 輸出最接近的前3名中文詞彙
|
62 |
+
return top_k_words
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|