Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +71 -60
api_server.py
CHANGED
@@ -76,71 +76,82 @@ def predict():
|
|
76 |
|
77 |
file = request.files['image']
|
78 |
|
79 |
-
#
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
# # Check image shape
|
83 |
# if image_data.size != (28, 28):
|
84 |
# return "Invalid image shape. Expected (28, 28), take from 'demo images' folder."
|
85 |
|
86 |
-
# Preprocess the image
|
87 |
-
processed_image = preprocess_image(image_data)
|
88 |
-
|
89 |
-
# Make a prediction using YOLO
|
90 |
-
results = model(
|
91 |
-
|
92 |
-
# Process the YOLO output
|
93 |
-
detections = []
|
94 |
-
for det in results.xyxy[0]: # Assuming results are in xyxy format (xmin, ymin, xmax, ymax, confidence, class)
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
# Calculate latency in milliseconds
|
106 |
-
latency_ms = (time.time() - start_time) * 1000
|
107 |
-
|
108 |
-
# Return the detection results and latency as JSON response
|
109 |
-
response = {
|
110 |
-
|
111 |
-
|
112 |
-
}
|
113 |
-
|
114 |
-
# dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
115 |
-
# flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
116 |
-
# The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|
117 |
-
return jsonify(response)
|
118 |
-
|
119 |
-
|
120 |
-
# Helper function to preprocess the image
|
121 |
-
def preprocess_image(image_data):
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
|
145 |
|
146 |
# API route for health check
|
|
|
76 |
|
77 |
file = request.files['image']
|
78 |
|
79 |
+
# 讀取圖像
|
80 |
+
try:
|
81 |
+
image_data = Image.open(file)
|
82 |
+
except Exception as e:
|
83 |
+
return jsonify({'error': str(e)}), 400
|
84 |
+
|
85 |
+
# 將圖像儲存到一個緩衝區
|
86 |
+
img_io = io.BytesIO()
|
87 |
+
image.save(img_io, 'PNG')
|
88 |
+
img_io.seek(0)
|
89 |
+
|
90 |
+
# 返回圖像
|
91 |
+
return send_file(img_io, mimetype='image/png')
|
92 |
|
93 |
# # Check image shape
|
94 |
# if image_data.size != (28, 28):
|
95 |
# return "Invalid image shape. Expected (28, 28), take from 'demo images' folder."
|
96 |
|
97 |
+
# # Preprocess the image
|
98 |
+
# processed_image = preprocess_image(image_data)
|
99 |
+
|
100 |
+
# # Make a prediction using YOLO
|
101 |
+
# results = model(image_data)
|
102 |
+
|
103 |
+
# # Process the YOLO output
|
104 |
+
# detections = []
|
105 |
+
# for det in results.xyxy[0]: # Assuming results are in xyxy format (xmin, ymin, xmax, ymax, confidence, class)
|
106 |
+
# x_min, y_min, x_max, y_max, confidence, class_idx = det
|
107 |
+
# width = x_max - x_min
|
108 |
+
# height = y_max - y_min
|
109 |
+
# detection = {
|
110 |
+
# "label": int(class_idx),
|
111 |
+
# "confidence": float(confidence),
|
112 |
+
# "bbox": [float(x_min), float(y_min), float(width), float(height)]
|
113 |
+
# }
|
114 |
+
# detections.append(detection)
|
115 |
+
|
116 |
+
# # Calculate latency in milliseconds
|
117 |
+
# latency_ms = (time.time() - start_time) * 1000
|
118 |
+
|
119 |
+
# # Return the detection results and latency as JSON response
|
120 |
+
# response = {
|
121 |
+
# 'detections': detections,
|
122 |
+
# 'ml-latency-ms': round(latency_ms, 4)
|
123 |
+
# }
|
124 |
+
|
125 |
+
# # dictionary is not a JSON: https://www.quora.com/What-is-the-difference-between-JSON-and-a-dictionary
|
126 |
+
# # flask.jsonify vs json.dumps https://sentry.io/answers/difference-between-json-dumps-and-flask-jsonify/
|
127 |
+
# # The flask.jsonify() function returns a Response object with Serializable JSON and content_type=application/json.
|
128 |
+
# return jsonify(response)
|
129 |
+
|
130 |
+
|
131 |
+
# # Helper function to preprocess the image
|
132 |
+
# def preprocess_image(image_data):
|
133 |
+
# """Preprocess image for YOLO Model Inference
|
134 |
+
|
135 |
+
# :param image_data: Raw image (PIL.Image)
|
136 |
+
# :return: image: Preprocessed Image (Tensor)
|
137 |
+
# """
|
138 |
+
# # Define the YOLO input size (example 640x640, you can modify this based on your model)
|
139 |
+
# input_size = (640, 640)
|
140 |
+
|
141 |
+
# # Define transformation: Resize the image, convert to Tensor, and normalize pixel values
|
142 |
+
# transform = transforms.Compose([
|
143 |
+
# transforms.Resize(input_size), # Resize to YOLO input size
|
144 |
+
# transforms.ToTensor(), # Convert image to PyTorch Tensor (通道數、影像高度和寬度)
|
145 |
+
# transforms.Normalize([0.0, 0.0, 0.0], [1.0, 1.0, 1.0]) # Normalization (if needed)
|
146 |
+
# ])
|
147 |
+
|
148 |
+
# # Apply transformations to the image
|
149 |
+
# image = transform(image_data)
|
150 |
+
|
151 |
+
# # Add batch dimension (1, C, H, W) since YOLO expects a batch
|
152 |
+
# image = image.unsqueeze(0)
|
153 |
+
|
154 |
+
# return image
|
155 |
|
156 |
|
157 |
# API route for health check
|