Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +3 -1
api_server.py
CHANGED
@@ -117,6 +117,8 @@ def predict():
|
|
117 |
labels = result.boxes.cls # Get predicted label IDs
|
118 |
label_names = [model.names[int(label)] for label in labels] # Convert to names
|
119 |
|
|
|
|
|
120 |
element_counts = Counter(label_names)
|
121 |
|
122 |
encoded_images=[]
|
@@ -135,7 +137,7 @@ def predict():
|
|
135 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
136 |
top_k_words.append(clip_model.clip_result(yolo_img)) # CLIP預測3個結果(top_k_words)
|
137 |
encoded_images.append(image_to_base64(yolo_img))
|
138 |
-
print(top_k_words)
|
139 |
|
140 |
# if element_counts[element] > 1: #某隻角色的數量>1
|
141 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
|
|
117 |
labels = result.boxes.cls # Get predicted label IDs
|
118 |
label_names = [model.names[int(label)] for label in labels] # Convert to names
|
119 |
|
120 |
+
print(f"======YOLO result: {label_names}======")
|
121 |
+
|
122 |
element_counts = Counter(label_names)
|
123 |
|
124 |
encoded_images=[]
|
|
|
137 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
138 |
top_k_words.append(clip_model.clip_result(yolo_img)) # CLIP預測3個結果(top_k_words)
|
139 |
encoded_images.append(image_to_base64(yolo_img))
|
140 |
+
print(f"**{yolo_img}:{top_k_words}**\n")
|
141 |
|
142 |
# if element_counts[element] > 1: #某隻角色的數量>1
|
143 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|