Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +24 -22
api_server.py
CHANGED
@@ -14,6 +14,7 @@ from flask import Flask, jsonify, request, render_template, send_file
|
|
14 |
import torch
|
15 |
from collections import Counter
|
16 |
from clip_model import ClipModel
|
|
|
17 |
|
18 |
# Disable tensorflow warnings
|
19 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
@@ -75,7 +76,6 @@ def get_jpg_files(path):
|
|
75 |
# image_folder = '/content/drive/MyDrive/chiikawa' # 替換成你的目錄路徑
|
76 |
# jpg_files = get_jpg_files(image_folder)
|
77 |
|
78 |
-
import psutil
|
79 |
|
80 |
def check_memory_usage():
|
81 |
# Get memory details
|
@@ -86,20 +86,21 @@ def check_memory_usage():
|
|
86 |
used_memory = memory_info.used / (1024 * 1024)
|
87 |
memory_usage_percent = memory_info.percent
|
88 |
|
89 |
-
print(f"Total Memory: {total_memory:.2f} MB")
|
90 |
-
print(f"Available Memory: {available_memory:.2f} MB")
|
91 |
-
print(f"Used Memory: {used_memory:.2f} MB")
|
92 |
-
print(f"Memory Usage (%): {memory_usage_percent}
|
93 |
|
94 |
# Run the function
|
95 |
check_memory_usage()
|
96 |
-
|
|
|
97 |
# Initialize the Flask application
|
98 |
app = Flask(__name__)
|
99 |
# Initialize the ClipModel at the start
|
100 |
clip_model = ClipModel()
|
101 |
|
102 |
-
|
103 |
|
104 |
# API route for prediction(YOLO)
|
105 |
@app.route('/predict', methods=['POST'])
|
@@ -125,6 +126,7 @@ def predict():
|
|
125 |
results = model(image_data)
|
126 |
print ("***** YOLO predict result:",results,"********")
|
127 |
print("***** YOLO predict DONE *****")
|
|
|
128 |
check_memory_usage()
|
129 |
|
130 |
# 檢查 YOLO 是否返回了有效的結果
|
@@ -147,7 +149,7 @@ def predict():
|
|
147 |
labels = result.boxes.cls # Get predicted label IDs
|
148 |
label_names = [model.names[int(label)] for label in labels] # Convert to names
|
149 |
|
150 |
-
print(f"======YOLO
|
151 |
|
152 |
element_counts = Counter(label_names)
|
153 |
|
@@ -165,10 +167,10 @@ def predict():
|
|
165 |
element_list.append(element)
|
166 |
|
167 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
168 |
-
print("*****START CLIP *****")
|
169 |
top_k_words.append(clip_model.clip_result(yolo_img)) # CLIP預測3個結果(top_k_words)
|
170 |
#encoded_images.append(image_to_base64(yolo_img))
|
171 |
-
print(f"
|
172 |
|
173 |
# if element_counts[element] > 1: #某隻角色的數量>1
|
174 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
@@ -181,18 +183,18 @@ def predict():
|
|
181 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}/im.jpg.jpg"
|
182 |
# encoded_images.append(image_to_base64(yolo_path))
|
183 |
|
184 |
-
|
185 |
-
response_data = {
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
}
|
196 |
# response_data = {
|
197 |
# 'message_id': message_id,
|
198 |
# 'images': encoded_images,
|
|
|
14 |
import torch
|
15 |
from collections import Counter
|
16 |
from clip_model import ClipModel
|
17 |
+
import psutil
|
18 |
|
19 |
# Disable tensorflow warnings
|
20 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
76 |
# image_folder = '/content/drive/MyDrive/chiikawa' # 替換成你的目錄路徑
|
77 |
# jpg_files = get_jpg_files(image_folder)
|
78 |
|
|
|
79 |
|
80 |
def check_memory_usage():
|
81 |
# Get memory details
|
|
|
86 |
used_memory = memory_info.used / (1024 * 1024)
|
87 |
memory_usage_percent = memory_info.percent
|
88 |
|
89 |
+
print(f"^^^^^^Total Memory: {total_memory:.2f} MB^^^^^^")
|
90 |
+
print(f"^^^^^^Available Memory: {available_memory:.2f} MB^^^^^^")
|
91 |
+
print(f"^^^^^^Used Memory: {used_memory:.2f} MB^^^^^^")
|
92 |
+
print(f"^^^^^^Memory Usage (%): {memory_usage_percent}%^^^^^^")
|
93 |
|
94 |
# Run the function
|
95 |
check_memory_usage()
|
96 |
+
|
97 |
+
|
98 |
# Initialize the Flask application
|
99 |
app = Flask(__name__)
|
100 |
# Initialize the ClipModel at the start
|
101 |
clip_model = ClipModel()
|
102 |
|
103 |
+
|
104 |
|
105 |
# API route for prediction(YOLO)
|
106 |
@app.route('/predict', methods=['POST'])
|
|
|
126 |
results = model(image_data)
|
127 |
print ("***** YOLO predict result:",results,"********")
|
128 |
print("***** YOLO predict DONE *****")
|
129 |
+
|
130 |
check_memory_usage()
|
131 |
|
132 |
# 檢查 YOLO 是否返回了有效的結果
|
|
|
149 |
labels = result.boxes.cls # Get predicted label IDs
|
150 |
label_names = [model.names[int(label)] for label in labels] # Convert to names
|
151 |
|
152 |
+
print(f"======YOLO label_names: {label_names}======")
|
153 |
|
154 |
element_counts = Counter(label_names)
|
155 |
|
|
|
167 |
element_list.append(element)
|
168 |
|
169 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
170 |
+
print("***** START CLIP *****")
|
171 |
top_k_words.append(clip_model.clip_result(yolo_img)) # CLIP預測3個結果(top_k_words)
|
172 |
#encoded_images.append(image_to_base64(yolo_img))
|
173 |
+
print(f"{yolo_img}:{top_k_words}\n")
|
174 |
|
175 |
# if element_counts[element] > 1: #某隻角色的數量>1
|
176 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}"
|
|
|
183 |
# yolo_path = f"{YOLO_DIR}/{message_id}/{element}/im.jpg.jpg"
|
184 |
# encoded_images.append(image_to_base64(yolo_path))
|
185 |
|
186 |
+
## 建立回應資料
|
187 |
+
# response_data = {
|
188 |
+
# 'message_id': message_id,
|
189 |
+
# 'description': element_list,
|
190 |
+
# 'images': [
|
191 |
+
# {
|
192 |
+
# 'encoded_image': encoded_image,
|
193 |
+
# 'description_list': top_k_words
|
194 |
+
# }
|
195 |
+
# for encoded_image, description_list in zip(encoded_images, top_k_words)
|
196 |
+
# ]
|
197 |
+
# }
|
198 |
# response_data = {
|
199 |
# 'message_id': message_id,
|
200 |
# 'images': encoded_images,
|