ning8429 commited on
Commit
eba1ae5
·
verified ·
1 Parent(s): 531c3cd

Update clip_model.py

Browse files
Files changed (1) hide show
  1. clip_model.py +18 -0
clip_model.py CHANGED
@@ -20,11 +20,27 @@ class ClipModel:
20
  self.processor = ChineseCLIPProcessor.from_pretrained(model_name)
21
 
22
  print("***** Clip Model LOAD DONE *****")
 
23
 
24
  # Load Chinese vocabulary
25
  with open(vocab_path, 'r', encoding='utf-8') as f:
26
  self.vocab = [line.strip() for line in f.readlines()]
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  def clip_result(self, image_path, top_k=3):
29
  """
30
  給定圖片路徑,返回最接近的 top_k 詞彙
@@ -33,6 +49,8 @@ class ClipModel:
33
  image = Image.open(image_path)
34
 
35
  print(f"===== Clip Model_clip_result : {image_path} ===== ")
 
 
36
 
37
  # Process images and texts
38
  batch_size = 16 # Process 16 vocab at a time
 
20
  self.processor = ChineseCLIPProcessor.from_pretrained(model_name)
21
 
22
  print("***** Clip Model LOAD DONE *****")
23
+ check_memory_usage()
24
 
25
  # Load Chinese vocabulary
26
  with open(vocab_path, 'r', encoding='utf-8') as f:
27
  self.vocab = [line.strip() for line in f.readlines()]
28
 
29
+ def check_memory_usage():
30
+ # Get memory details
31
+ memory_info = psutil.virtual_memory()
32
+
33
+ total_memory = memory_info.total / (1024 * 1024) # Convert bytes to MB
34
+ available_memory = memory_info.available / (1024 * 1024)
35
+ used_memory = memory_info.used / (1024 * 1024)
36
+ memory_usage_percent = memory_info.percent
37
+
38
+ print(f"^^^^^^ Total Memory: {total_memory:.2f} MB ^^^^^^")
39
+ print(f"^^^^^^ Available Memory: {available_memory:.2f} MB ^^^^^^")
40
+ print(f"^^^^^^ Used Memory: {used_memory:.2f} MB ^^^^^^")
41
+ print(f"^^^^^^ Memory Usage (%): {memory_usage_percent}% ^^^^^^")
42
+
43
+
44
  def clip_result(self, image_path, top_k=3):
45
  """
46
  給定圖片路徑,返回最接近的 top_k 詞彙
 
49
  image = Image.open(image_path)
50
 
51
  print(f"===== Clip Model_clip_result : {image_path} ===== ")
52
+ # Run the function
53
+ check_memory_usage()
54
 
55
  # Process images and texts
56
  batch_size = 16 # Process 16 vocab at a time