Spaces:
Sleeping
Sleeping
Update api_server.py
Browse files- api_server.py +11 -4
api_server.py
CHANGED
@@ -13,8 +13,8 @@ from tensorflow import keras
|
|
13 |
from flask import Flask, jsonify, request, render_template, send_file
|
14 |
import torch
|
15 |
from collections import Counter
|
16 |
-
from clip_model import ClipModel
|
17 |
import psutil
|
|
|
18 |
|
19 |
# Disable tensorflow warnings
|
20 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
@@ -24,6 +24,7 @@ load_type = 'local'
|
|
24 |
MODEL_YOLO = "yolo11_detect_best_241024_1.pt"
|
25 |
MODEL_DIR = "./artifacts/models"
|
26 |
YOLO_DIR = "./artifacts/yolo"
|
|
|
27 |
#REPO_ID = "1vash/mnist_demo_model"
|
28 |
|
29 |
# Load the saved YOLO model into memory
|
@@ -97,8 +98,8 @@ check_memory_usage()
|
|
97 |
|
98 |
# Initialize the Flask application
|
99 |
app = Flask(__name__)
|
100 |
-
# Initialize the ClipModel at the start
|
101 |
-
clip_model = ClipModel()
|
102 |
|
103 |
|
104 |
|
@@ -168,7 +169,13 @@ def predict():
|
|
168 |
|
169 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
170 |
print("***** 4. START CLIP *****")
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
#encoded_images.append(image_to_base64(yolo_img))
|
173 |
print(f"===== CLIP result:{top_k_words} =====\n")
|
174 |
|
|
|
13 |
from flask import Flask, jsonify, request, render_template, send_file
|
14 |
import torch
|
15 |
from collections import Counter
|
|
|
16 |
import psutil
|
17 |
+
from gradio_client import Client, handle_file
|
18 |
|
19 |
# Disable tensorflow warnings
|
20 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
24 |
MODEL_YOLO = "yolo11_detect_best_241024_1.pt"
|
25 |
MODEL_DIR = "./artifacts/models"
|
26 |
YOLO_DIR = "./artifacts/yolo"
|
27 |
+
GRADIO_URL = "https://50094cfbc694a82dea.gradio.live/"
|
28 |
#REPO_ID = "1vash/mnist_demo_model"
|
29 |
|
30 |
# Load the saved YOLO model into memory
|
|
|
98 |
|
99 |
# Initialize the Flask application
|
100 |
app = Flask(__name__)
|
101 |
+
# # Initialize the ClipModel at the start
|
102 |
+
# clip_model = ClipModel()
|
103 |
|
104 |
|
105 |
|
|
|
169 |
|
170 |
for yolo_img in yolo_file: # 每張切圖yolo_img
|
171 |
print("***** 4. START CLIP *****")
|
172 |
+
client = Client(GRADIO_URL)
|
173 |
+
clip_result = client.predict(
|
174 |
+
image=handle_file(yolo_img),
|
175 |
+
top_k=3,
|
176 |
+
api_name="/predict"
|
177 |
+
)
|
178 |
+
top_k_words.append(clip_result) # CLIP預測3個結果(top_k_words)
|
179 |
#encoded_images.append(image_to_base64(yolo_img))
|
180 |
print(f"===== CLIP result:{top_k_words} =====\n")
|
181 |
|