import os import torch from PIL import Image from transformers import ChineseCLIPProcessor, ChineseCLIPModel def clip_result(image_path): # 設置設備 device = "cuda" if torch.cuda.is_available() else "cpu" # Get the directory where this script is located script_dir = os.path.dirname(os.path.abspath(__file__)) # Construct the full path to the file in the subfolder model_path = os.path.join(script_dir, 'artifacts/models', 'best_clip_model.pth') print("model_path:", model_path) # 載入訓練好的模型和處理器 model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") model.load_state_dict(torch.load(model_path, map_location=device)) model = model.to(device) model.eval() processor = ChineseCLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") # 1. 加載圖片 # image_path = '/content/drive/MyDrive/幽靈吉伊卡哇.png' image = Image.open(image_path) # 2. 加載中文詞彙表 with open('./chiikawa/word_list.txt', 'r', encoding='utf-8') as f: vocab = [line.strip() for line in f.readlines()] # 3. 圖像和文本處理 batch_size = 16 # 每次處理16個詞彙 similarities = [] # 釋放未使用的顯存 torch.cuda.empty_cache() with torch.no_grad(): for i in range(0, len(vocab), batch_size): batch_vocab = vocab[i:i + batch_size] inputs = processor( text=batch_vocab, images=image, return_tensors="pt", padding=True ).to(device) # 推理並進行相似度計算 outputs = model(**inputs) image_embeds = outputs.image_embeds / outputs.image_embeds.norm(dim=-1, keepdim=True) text_embeds = outputs.text_embeds / outputs.text_embeds.norm(dim=-1, keepdim=True) similarity = torch.matmul(image_embeds, text_embeds.T).squeeze(0) similarities.append(similarity) # 4. 合併所有相似度 similarity = torch.cat(similarities, dim=0) # 5. 找到相似度最高的詞彙 top_k = 3 top_k_indices = torch.topk(similarity, top_k).indices.tolist() top_k_words = [vocab[idx] for idx in top_k_indices] # 6. 輸出最接近的前3名中文詞彙 # print("最接近的前3名中文詞彙是:") # for rank, word in enumerate(top_k_words, 1): # print(f"{rank}. {word}") return top_k_words