import streamlit as st from transformers import pipeline # Load summarization pipeline @st.cache_resource def load_summarizer(): return pipeline("summarization", model="facebook/bart-large-cnn") summarizer = load_summarizer() # Streamlit UI st.set_page_config(page_title="Text Summarizer", page_icon="📝", layout="centered") st.title("📝 Text Summarizer") # Input text text = st.text_area("Enter the text you want to summarize:", height=250) # Summary button if st.button("Summarize"): if text.strip(): with st.spinner("Generating summary..."): summary = summarizer(text, max_length=150, min_length=40, do_sample=False) st.subheader("Summary") st.success(summary[0]['summary_text']) else: st.warning("Please enter some text to summarize.") import os port = int(os.environ.get("PORT", 7860)) app.launch(server_name="0.0.0.0", server_port=port)