Upload 2 files
Browse files- Era_s20_updt.py +373 -0
- app.py +42 -0
Era_s20_updt.py
ADDED
|
@@ -0,0 +1,373 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers as t
|
| 2 |
+
assert t.__version__=='4.25.1', "Transformers version should be as specified"
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
|
| 7 |
+
from huggingface_hub import notebook_login
|
| 8 |
+
|
| 9 |
+
# For video display:
|
| 10 |
+
from IPython.display import HTML
|
| 11 |
+
from matplotlib import pyplot as plt
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from PIL import Image
|
| 14 |
+
from torch import autocast
|
| 15 |
+
from torchvision import transforms as tfms
|
| 16 |
+
from tqdm.auto import tqdm
|
| 17 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
| 18 |
+
import os
|
| 19 |
+
import io
|
| 20 |
+
import base64
|
| 21 |
+
import torch.nn.functional as F
|
| 22 |
+
#from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
torch.manual_seed(1)
|
| 26 |
+
|
| 27 |
+
if not (Path.home()/'.cache/huggingface'/'token').exists(): notebook_login()
|
| 28 |
+
|
| 29 |
+
# Supress some unnecessary warnings when loading the CLIPTextModel
|
| 30 |
+
logging.set_verbosity_error()
|
| 31 |
+
|
| 32 |
+
# Set device
|
| 33 |
+
torch_device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
| 34 |
+
if "mps" == torch_device: os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = "1"
|
| 35 |
+
|
| 36 |
+
import sys,gc,traceback
|
| 37 |
+
import fastcore.all as fc
|
| 38 |
+
|
| 39 |
+
# %% ../nbs/11_initializing.ipynb 11
|
| 40 |
+
def clean_ipython_hist():
|
| 41 |
+
# Code in this function mainly copied from IPython source
|
| 42 |
+
if not 'get_ipython' in globals(): return
|
| 43 |
+
ip = get_ipython()
|
| 44 |
+
user_ns = ip.user_ns
|
| 45 |
+
ip.displayhook.flush()
|
| 46 |
+
pc = ip.displayhook.prompt_count + 1
|
| 47 |
+
for n in range(1, pc): user_ns.pop('_i'+repr(n),None)
|
| 48 |
+
user_ns.update(dict(_i='',_ii='',_iii=''))
|
| 49 |
+
hm = ip.history_manager
|
| 50 |
+
hm.input_hist_parsed[:] = [''] * pc
|
| 51 |
+
hm.input_hist_raw[:] = [''] * pc
|
| 52 |
+
hm._i = hm._ii = hm._iii = hm._i00 = ''
|
| 53 |
+
|
| 54 |
+
# %% ../nbs/11_initializing.ipynb 12
|
| 55 |
+
def clean_tb():
|
| 56 |
+
# h/t Piotr Czapla
|
| 57 |
+
if hasattr(sys, 'last_traceback'):
|
| 58 |
+
traceback.clear_frames(sys.last_traceback)
|
| 59 |
+
delattr(sys, 'last_traceback')
|
| 60 |
+
if hasattr(sys, 'last_type'): delattr(sys, 'last_type')
|
| 61 |
+
if hasattr(sys, 'last_value'): delattr(sys, 'last_value')
|
| 62 |
+
|
| 63 |
+
# %% ../nbs/11_initializing.ipynb 13
|
| 64 |
+
def clean_mem():
|
| 65 |
+
clean_tb()
|
| 66 |
+
clean_ipython_hist()
|
| 67 |
+
gc.collect()
|
| 68 |
+
torch.cuda.empty_cache()
|
| 69 |
+
|
| 70 |
+
clean_mem()
|
| 71 |
+
|
| 72 |
+
# Load the autoencoder model which will be used to decode the latents into image space.
|
| 73 |
+
vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")
|
| 74 |
+
|
| 75 |
+
# Load the tokenizer and text encoder to tokenize and encode the text.
|
| 76 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
| 77 |
+
text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14")
|
| 78 |
+
|
| 79 |
+
# The UNet model for generating the latents.
|
| 80 |
+
unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet")
|
| 81 |
+
|
| 82 |
+
# The noise scheduler
|
| 83 |
+
scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000)
|
| 84 |
+
|
| 85 |
+
# To the GPU we go!
|
| 86 |
+
vae = vae.to(torch_device)
|
| 87 |
+
text_encoder = text_encoder.to(torch_device)
|
| 88 |
+
unet = unet.to(torch_device);
|
| 89 |
+
|
| 90 |
+
embeds_folder = Path('C:/Users/shivs/Downloads/paintings_embed')
|
| 91 |
+
file_names = [path.name for path in embeds_folder.glob('*') if path.is_file()]
|
| 92 |
+
print(file_names)
|
| 93 |
+
|
| 94 |
+
style_names = [list(torch.load(embeds_folder/file).keys())[0] for file in file_names]
|
| 95 |
+
style_names
|
| 96 |
+
num_added_tokens = tokenizer.add_tokens(style_names)
|
| 97 |
+
|
| 98 |
+
added_tokens = list(map(tokenizer.added_tokens_encoder.get,style_names))
|
| 99 |
+
added_tokens,style_names
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
text_encoder.resize_token_embeddings(len(tokenizer))
|
| 103 |
+
text_encoder.text_model.embeddings.token_embedding
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
style_dict = {}
|
| 107 |
+
|
| 108 |
+
list_styles = [torch.load(embeds_folder/file) for file in file_names]
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
for k,v in list_styles[0].items():
|
| 112 |
+
print(k,v.shape)
|
| 113 |
+
|
| 114 |
+
style_dict = {style:embedding for each_style in list_styles for style,embedding in each_style.items()}
|
| 115 |
+
|
| 116 |
+
list(style_dict)
|
| 117 |
+
|
| 118 |
+
for token,style in zip(added_tokens,style_names):
|
| 119 |
+
text_encoder.text_model.embeddings.token_embedding.weight.data[token] = style_dict[style]
|
| 120 |
+
|
| 121 |
+
# #checking if we added the embeddings properly to text_encoder
|
| 122 |
+
# ft_dict = torch.load(embeds_folder/'fairy-tale-painting_embeds.bin')
|
| 123 |
+
|
| 124 |
+
# list(ft_dict.keys())[0]
|
| 125 |
+
|
| 126 |
+
# ft_dict['<fairy-tale-painting-style>'][:10]
|
| 127 |
+
|
| 128 |
+
clean_mem()
|
| 129 |
+
|
| 130 |
+
# text_encoder.get_input_embeddings()(torch.tensor(49408, device=torch_device))[:10]
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# Prep Scheduler
|
| 134 |
+
def set_timesteps(scheduler, num_inference_steps):
|
| 135 |
+
scheduler.set_timesteps(num_inference_steps)
|
| 136 |
+
scheduler.timesteps = scheduler.timesteps.to(torch.float32) # minor fix to ensure MPS compatibility, fixed in diffusers PR 3925
|
| 137 |
+
|
| 138 |
+
def pil_to_latent(input_im):
|
| 139 |
+
# Single image -> single latent in a batch (so size 1, 4, 64, 64)
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
latent = vae.encode(tfms.ToTensor()(input_im).unsqueeze(0).to(torch_device)*2-1) # Note scaling
|
| 142 |
+
return 0.18215 * latent.latent_dist.sample()
|
| 143 |
+
|
| 144 |
+
def latents_to_pil(latents):
|
| 145 |
+
# bath of latents -> list of images
|
| 146 |
+
latents = (1 / 0.18215) * latents
|
| 147 |
+
with torch.no_grad():
|
| 148 |
+
image = vae.decode(latents).sample
|
| 149 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
| 150 |
+
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
|
| 151 |
+
images = (image * 255).round().astype("uint8")
|
| 152 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 153 |
+
return pil_images
|
| 154 |
+
|
| 155 |
+
# Access the embedding layer
|
| 156 |
+
token_emb_layer = text_encoder.text_model.embeddings.token_embedding
|
| 157 |
+
token_emb_layer # Vocab size 49408, emb_dim 768
|
| 158 |
+
|
| 159 |
+
pos_emb_layer = text_encoder.text_model.embeddings.position_embedding
|
| 160 |
+
|
| 161 |
+
position_ids = text_encoder.text_model.embeddings.position_ids[:, :77]
|
| 162 |
+
position_embeddings = pos_emb_layer(position_ids)
|
| 163 |
+
print(position_embeddings.shape)
|
| 164 |
+
|
| 165 |
+
def get_output_embeds(input_embeddings):
|
| 166 |
+
# CLIP's text model uses causal mask, so we prepare it here:
|
| 167 |
+
bsz, seq_len = input_embeddings.shape[:2]
|
| 168 |
+
causal_attention_mask = text_encoder.text_model._build_causal_attention_mask(bsz, seq_len, dtype=input_embeddings.dtype)
|
| 169 |
+
|
| 170 |
+
# Getting the output embeddings involves calling the model with passing output_hidden_states=True
|
| 171 |
+
# so that it doesn't just return the pooled final predictions:
|
| 172 |
+
encoder_outputs = text_encoder.text_model.encoder(
|
| 173 |
+
inputs_embeds=input_embeddings,
|
| 174 |
+
attention_mask=None, # We aren't using an attention mask so that can be None
|
| 175 |
+
causal_attention_mask=causal_attention_mask.to(torch_device),
|
| 176 |
+
output_attentions=None,
|
| 177 |
+
output_hidden_states=True, # We want the output embs not the final output
|
| 178 |
+
return_dict=None,
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# We're interested in the output hidden state only
|
| 182 |
+
output = encoder_outputs[0]
|
| 183 |
+
|
| 184 |
+
# There is a final layer norm we need to pass these through
|
| 185 |
+
output = text_encoder.text_model.final_layer_norm(output)
|
| 186 |
+
|
| 187 |
+
# And now they're ready!
|
| 188 |
+
return output
|
| 189 |
+
|
| 190 |
+
#Generating an image with these modified embeddings
|
| 191 |
+
|
| 192 |
+
def generate_with_embs_custom(text_embeddings,seed):
|
| 193 |
+
height = 512 # default height of Stable Diffusion
|
| 194 |
+
width = 512 # default width of Stable Diffusion
|
| 195 |
+
num_inference_steps = 1 # Number of denoising steps
|
| 196 |
+
guidance_scale = 7.5 # Scale for classifier-free guidance
|
| 197 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
| 198 |
+
batch_size = 1
|
| 199 |
+
|
| 200 |
+
max_length = text_embeddings.shape[1]
|
| 201 |
+
uncond_input = tokenizer(
|
| 202 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 203 |
+
)
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
| 206 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 207 |
+
|
| 208 |
+
# Prep Scheduler
|
| 209 |
+
set_timesteps(scheduler, num_inference_steps)
|
| 210 |
+
|
| 211 |
+
# Prep latents
|
| 212 |
+
latents = torch.randn(
|
| 213 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
| 214 |
+
generator=generator,
|
| 215 |
+
)
|
| 216 |
+
latents = latents.to(torch_device)
|
| 217 |
+
latents = latents * scheduler.init_noise_sigma
|
| 218 |
+
|
| 219 |
+
# Loop
|
| 220 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
| 221 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
| 222 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 223 |
+
sigma = scheduler.sigmas[i]
|
| 224 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 225 |
+
|
| 226 |
+
# predict the noise residual
|
| 227 |
+
with torch.no_grad():
|
| 228 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
| 229 |
+
|
| 230 |
+
# perform guidance
|
| 231 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 232 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 233 |
+
|
| 234 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 235 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
| 236 |
+
|
| 237 |
+
return latents_to_pil(latents)[0]
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
# ref_image = Image.open('C:/Users/shivs/Downloads/lg.jpg').resize((512,512))
|
| 241 |
+
# ref_latent = pil_to_latent(ref_image)
|
| 242 |
+
|
| 243 |
+
## Guidance through Custom Loss Function
|
| 244 |
+
def custom_loss(latent):
|
| 245 |
+
error = F.mse_loss(0.5*latent,0.8*ref_latent)
|
| 246 |
+
return error
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class Styles_paintings():
|
| 250 |
+
def __init__(self,prompt):
|
| 251 |
+
self.output_styles = []
|
| 252 |
+
self.prompt = prompt
|
| 253 |
+
self.style_names = list(style_dict)
|
| 254 |
+
self.seeds = [1024+i for i in range(len(self.style_names))]
|
| 255 |
+
|
| 256 |
+
def generate_styles(self):
|
| 257 |
+
#print('The Values are ', list(style_dict)[0])
|
| 258 |
+
|
| 259 |
+
for seed,style_name in zip(self.seeds,self.style_names):
|
| 260 |
+
# Tokenize
|
| 261 |
+
prompt = f'{self.prompt} in the style of {style_name}'
|
| 262 |
+
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 263 |
+
input_ids = text_input.input_ids.to(torch_device)
|
| 264 |
+
|
| 265 |
+
# Get token embeddings
|
| 266 |
+
token_embeddings = token_emb_layer(input_ids)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
# Combine with pos embs
|
| 270 |
+
input_embeddings = token_embeddings + position_embeddings
|
| 271 |
+
|
| 272 |
+
# Feed through to get final output embs
|
| 273 |
+
modified_output_embeddings = get_output_embeds(input_embeddings)
|
| 274 |
+
|
| 275 |
+
# And generate an image with this:
|
| 276 |
+
self.output_styles.append(generate_with_embs_custom(modified_output_embeddings,seed))
|
| 277 |
+
|
| 278 |
+
def generate_styles_with_custom_loss(self, image):
|
| 279 |
+
height = 512 # default height of Stable Diffusion
|
| 280 |
+
width = 512 # default width of Stable Diffusion
|
| 281 |
+
num_inference_steps = 1 #@param # Number of denoising steps
|
| 282 |
+
guidance_scale = 8 #@param # Scale for classifier-free guidance
|
| 283 |
+
batch_size = 1
|
| 284 |
+
custom_loss_scale = 200 #@param
|
| 285 |
+
#print('image shape there is',image.size)
|
| 286 |
+
self.output_styles_with_custom_loss = []
|
| 287 |
+
#ref_image = Image.open('C:/Users/shivs/Downloads/ig.jpg').resize((512,512))
|
| 288 |
+
ref_latent = pil_to_latent(ref_image)
|
| 289 |
+
for seed,style_name in zip(self.seeds,self.style_names):
|
| 290 |
+
# Tokenize
|
| 291 |
+
prompt = f'{self.prompt} in the style of {style_name}'
|
| 292 |
+
generator = torch.manual_seed(seed) # Seed generator to create the inital latent noise
|
| 293 |
+
print(f' the prompt is : {prompt} with seed value :{seed}')
|
| 294 |
+
# Prep text
|
| 295 |
+
text_input = tokenizer([prompt], padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
| 296 |
+
with torch.no_grad():
|
| 297 |
+
text_embeddings = text_encoder(text_input.input_ids.to(torch_device))[0]
|
| 298 |
+
|
| 299 |
+
# And the uncond. input as before:
|
| 300 |
+
max_length = text_input.input_ids.shape[-1]
|
| 301 |
+
uncond_input = tokenizer(
|
| 302 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
| 303 |
+
)
|
| 304 |
+
with torch.no_grad():
|
| 305 |
+
uncond_embeddings = text_encoder(uncond_input.input_ids.to(torch_device))[0]
|
| 306 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
| 307 |
+
|
| 308 |
+
# Prep Scheduler
|
| 309 |
+
set_timesteps(scheduler, num_inference_steps)
|
| 310 |
+
|
| 311 |
+
# Prep latents
|
| 312 |
+
latents = torch.randn(
|
| 313 |
+
(batch_size, unet.in_channels, height // 8, width // 8),
|
| 314 |
+
generator=generator,)
|
| 315 |
+
latents = latents.to(torch_device)
|
| 316 |
+
latents = latents * scheduler.init_noise_sigma
|
| 317 |
+
|
| 318 |
+
# Loop
|
| 319 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
|
| 320 |
+
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
|
| 321 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 322 |
+
sigma = scheduler.sigmas[i]
|
| 323 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
| 324 |
+
|
| 325 |
+
# predict the noise residual
|
| 326 |
+
with torch.no_grad():
|
| 327 |
+
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
| 328 |
+
|
| 329 |
+
# perform CFG
|
| 330 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 331 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 332 |
+
|
| 333 |
+
#### ADDITIONAL GUIDANCE ###
|
| 334 |
+
if i%5 == 0:
|
| 335 |
+
# Requires grad on the latents
|
| 336 |
+
latents = latents.detach().requires_grad_()
|
| 337 |
+
|
| 338 |
+
# Get the predicted x0:
|
| 339 |
+
latents_x0 = latents - sigma * noise_pred
|
| 340 |
+
#latents_x0 = scheduler.step(noise_pred, t, latents).pred_original_sample
|
| 341 |
+
|
| 342 |
+
# Decode to image space
|
| 343 |
+
#denoised_images = vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5 # range (0, 1)
|
| 344 |
+
|
| 345 |
+
# Calculate loss
|
| 346 |
+
loss = custom_loss(latents_x0) * custom_loss_scale
|
| 347 |
+
#loss = blue_loss(denoised_images) * blue_loss_scale
|
| 348 |
+
|
| 349 |
+
# Occasionally print it out
|
| 350 |
+
if i%10==0:
|
| 351 |
+
print(i, 'loss:', loss.item())
|
| 352 |
+
|
| 353 |
+
# Get gradient
|
| 354 |
+
cond_grad = torch.autograd.grad(loss, latents)[0]
|
| 355 |
+
|
| 356 |
+
# Modify the latents based on this gradient
|
| 357 |
+
latents = latents.detach() - cond_grad * sigma**2
|
| 358 |
+
|
| 359 |
+
# Now step with scheduler
|
| 360 |
+
latents = scheduler.step(noise_pred, t, latents).prev_sample
|
| 361 |
+
|
| 362 |
+
self.output_styles_with_custom_loss.append(latents_to_pil(latents)[0])
|
| 363 |
+
|
| 364 |
+
def generate_final_image(im1,in_prompt):
|
| 365 |
+
paintings = Styles_paintings(in_prompt)
|
| 366 |
+
paintings.generate_styles()
|
| 367 |
+
r_image = im1.resize((512,512))
|
| 368 |
+
print('image shape is',r_image.size)
|
| 369 |
+
paintings.generate_styles_with_custom_loss(r_image)
|
| 370 |
+
|
| 371 |
+
#print(len(paintings.output_styles))
|
| 372 |
+
|
| 373 |
+
return [paintings.output_styles[0]], [paintings.output_styles[1]],[paintings.output_styles[2]],[paintings.output_styles[3]],[paintings.output_styles[4]],[paintings.output_styles_with_custom_loss[0]],[paintings.output_styles_with_custom_loss[1]],[paintings.output_styles_with_custom_loss[2]],[paintings.output_styles_with_custom_loss[3]],[paintings.output_styles_with_custom_loss[4]]
|
app.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[5]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from Era_s20_updt import generate_final_image
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
gr.Interface(
|
| 13 |
+
|
| 14 |
+
generate_final_image,
|
| 15 |
+
inputs=[
|
| 16 |
+
#gr.Image(label="Input Image"),
|
| 17 |
+
gr.Image(type='pil', label="Guided Image for Loss"),
|
| 18 |
+
gr.Text(label="Input Prompt")
|
| 19 |
+
|
| 20 |
+
#gr.Slider(0, 1, value=0.5, label="IOU Threshold"),
|
| 21 |
+
#gr.Slider(0, 1, value=0.4, label="Threshold"),
|
| 22 |
+
#gr.Checkbox(label="Show Grad Cam"),
|
| 23 |
+
#gr.Slider(0, 1, value=0.5, label="Opacity of GradCAM"),
|
| 24 |
+
],
|
| 25 |
+
outputs =
|
| 26 |
+
[
|
| 27 |
+
gr.Gallery(rows=2, columns=1"),
|
| 28 |
+
gr.Gallery(rows=2, columns=1),
|
| 29 |
+
gr.Gallery(rows=2, columns=1),
|
| 30 |
+
gr.Gallery(rows=2, columns=1),
|
| 31 |
+
gr.Gallery(rows=2, columns=1),
|
| 32 |
+
gr.Gallery(rows=2, columns=1),
|
| 33 |
+
gr.Gallery(rows=2, columns=1),
|
| 34 |
+
gr.Gallery(rows=2, columns=1),
|
| 35 |
+
gr.Gallery(rows=2, columns=1),
|
| 36 |
+
gr.Gallery(rows=2, columns=1)
|
| 37 |
+
|
| 38 |
+
],
|
| 39 |
+
title="Stable Diffusion",
|
| 40 |
+
layout="Vertical"
|
| 41 |
+
).launch()
|
| 42 |
+
|