File size: 3,413 Bytes
4581574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
decf5fd
4581574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad3ed95
4581574
 
ad3ed95
4581574
 
 
 
decf5fd
 
 
 
 
4581574
 
7450b7d
4581574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python
# coding: utf-8

# In[2]:


import gradio as gr
import torch
from torch import nn
from torch.nn import functional as F
from nano_gpt_inferencing import generate_paragraph


HTML_TEMPLATE = """    
     <style>
        body {
            font-family: 'Arial', sans-serif;
            background: #3498db; /* Blue background color */
            margin: 0;
            padding: 0;
        }

        #app-header {
            text-align: center;
            background: rgba(255, 255, 255, 0.7); /* Semi-transparent white */
            padding: 20px;
            border-radius: 10px;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
            position: relative; /* To position the artifacts */
            margin: 30px auto;
            max-width: 600px;
        }

        #app-header h1 {
            color: #2986cc;
            font-size: 2.5em;
            margin-bottom: 10px;
        }

        .header-images {
            display: flex;
            justify-content: center;
            align-items: center;
            margin: 20px 0;
        }

        .header-image {
            width: 100px;
            height: 100px;
            margin: 0 10px;
            background: #fff;
            border-radius: 50%;
            display: flex;
            justify-content: center;
            align-items: center;
            box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
        }

        .header-image img {
            max-width: 80px;
            max-height: 80px;
            border-radius: 50%;
        }

        .concept-description {
            position: absolute;
            bottom: -30px;
            left: 50%;
            transform: translateX(-50%);
            background-color: #4CAF50;
            color: white;
            padding: 5px 10px;
            border-radius: 5px;
            opacity: 0;
            transition: opacity 0.3s;
        }

        .concept:hover .concept-description {
            opacity: 1;
        }
    </style>
</head>
<body>
<div id="app-header">
    <!-- Header Images -->
    <div class="header-images">
        <div class="header-image">
            <img src="https://github.com/nkanungo/ERAS20/blob/main/images/bk.jpg?raw=true" alt="Image 1">
        </div>
        <div class="header-image">
            <img src="https://github.com/nkanungo/ERAS20/blob/main/images/sp.jpg?raw=true" alt="Image 2">
        </div>
    </div>
    <!-- Content -->
    <h1>Paragraph Auto Completion like Shakespeare </h1>
    <p>Generate dialogue using the intelligence from Shakespeare Dataset .</p>
    <p>Model: GPT.</p>
    <p>Dataset: Tiny Shakespeare.</p>
    <p>Token limit: User input .</p>
    <p>Input Text: User input.</p>
</div>
"""
with gr.Blocks(theme=gr.themes.Glass(),css=".gradio-container {background: url('https://github.com/nkanungo/ERAS20/blob/main/images/bg_1.jpg?raw=true')}") as interface:
    gr.HTML(value=HTML_TEMPLATE, show_label=False)
    
    with gr.Row(scale=1):
       
        
        inputs = [
            gr.Textbox(label="Input Text Prompt"),
            gr.Textbox(label="Token Limit")
        ]
        outputs = gr.Textbox(
            label="Generated Paragraph"
        )

     
    with gr.Column(scale=1):
        button = gr.Button("Generate")
        button.click(generate_paragraph, inputs=inputs, outputs=outputs)

if __name__ == "__main__":
    interface.launch(enable_queue=True)


# In[ ]: