ElizabethSrgh commited on
Commit
e6d1285
·
verified ·
1 Parent(s): 5f75c01

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ import torch
5
+
6
+ # Load tokenizer dan model dari Hugging Face Hub
7
+ model_name = "ElizabethSrgh/customer-service-multitask"
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
10
+
11
+ # Daftar label sesuai urutan model (ubah jika berbeda)
12
+ label_map = {
13
+ 0: "Complaint - Negative",
14
+ 1: "Inquiry - Neutral",
15
+ 2: "Request - Positive"
16
+ }
17
+
18
+ def predict(text):
19
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
20
+ with torch.no_grad():
21
+ outputs = model(**inputs)
22
+ logits = outputs.logits
23
+ predicted_class_id = torch.argmax(logits, dim=1).item()
24
+ return label_map.get(predicted_class_id, "Unknown")
25
+
26
+ # Gradio UI
27
+ interface = gr.Interface(
28
+ fn=predict,
29
+ inputs=gr.Textbox(lines=4, label="Masukkan Teks Percakapan"),
30
+ outputs=gr.Textbox(label="Hasil Prediksi"),
31
+ title="Klasifikasi Layanan Pelanggan",
32
+ description="Masukkan teks untuk memprediksi topik dan sentimen."
33
+ )
34
+
35
+ if __name__ == "__main__":
36
+ interface.launch()