Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load tokenizer dan model dari Hugging Face Hub
|
7 |
+
model_name = "ElizabethSrgh/customer-service-multitask"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Daftar label sesuai urutan model (ubah jika berbeda)
|
12 |
+
label_map = {
|
13 |
+
0: "Complaint - Negative",
|
14 |
+
1: "Inquiry - Neutral",
|
15 |
+
2: "Request - Positive"
|
16 |
+
}
|
17 |
+
|
18 |
+
def predict(text):
|
19 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = model(**inputs)
|
22 |
+
logits = outputs.logits
|
23 |
+
predicted_class_id = torch.argmax(logits, dim=1).item()
|
24 |
+
return label_map.get(predicted_class_id, "Unknown")
|
25 |
+
|
26 |
+
# Gradio UI
|
27 |
+
interface = gr.Interface(
|
28 |
+
fn=predict,
|
29 |
+
inputs=gr.Textbox(lines=4, label="Masukkan Teks Percakapan"),
|
30 |
+
outputs=gr.Textbox(label="Hasil Prediksi"),
|
31 |
+
title="Klasifikasi Layanan Pelanggan",
|
32 |
+
description="Masukkan teks untuk memprediksi topik dan sentimen."
|
33 |
+
)
|
34 |
+
|
35 |
+
if __name__ == "__main__":
|
36 |
+
interface.launch()
|