File size: 7,335 Bytes
a88983c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import time
import pandas as pd
import io
from transformers import pipeline
from streamlit_extras.stylable_container import stylable_container
import json
import plotly.express as px
from PyPDF2 import PdfReader
import docx
import zipfile
from gliner import GLiNER



st.subheader("14-Named Entity Recognition Web App", divider = "red")
st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary")

expander = st.expander("**Important notes on the 14-Named Entity Recognition Web App**")
expander.write('''
    
    **Named Entities:**
    This 14-Named Entity Recognition Web App predicts fourteen (14) labels (“person”, “location”, “country”, “city”, “organization”, “time”, “date”, “product”, “event name”, “money”, “affiliation”, “ordinal value”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
    
    **How to Use:**
    Upload your .pdf or .docx file. Then, click the 'Results' button to extract and tag entities in your text data.
    
    **Usage Limits:**
    You can request results up to 10 times.
 
    **Customization:**
    To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
    
    **Technical issues:**
    If your connection times out, please refresh the page or reopen the app's URL.
    
    For any errors or inquiries, please contact us at [email protected]
    
''')


with st.sidebar:
    container = st.container(border=True)
    container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
    
   
    
    
    
    st.subheader("Related NLP Web Apps", divider = "red")
    st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type = "primary")



   

    
    
       

if 'file_upload_attempts' not in st.session_state:
    st.session_state['file_upload_attempts'] = 0

max_attempts = 10


upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
text = None
df = None

if upload_file is not None:
    
    file_extension = upload_file.name.split('.')[-1].lower()
    if file_extension == 'pdf':
        try:
            pdf_reader = PdfReader(upload_file)
            text = ""
            for page in pdf_reader.pages:
                text += page.extract_text()
            st.write("Due to security protocols, the file content is hidden.")
        except Exception as e:
            st.error(f"An error occurred while reading PDF: {e}")
    elif file_extension == 'docx':
        try:
            doc = docx.Document(upload_file)
            text = "\n".join([para.text for para in doc.paragraphs])
            st.write("Due to security protocols, the file content is hidden.")
        except Exception as e:
            st.error(f"An error occurred while reading docx: {e}")
    else:
        st.warning("Unsupported file type.")
    
        st.stop()


        





if st.button("Results"):
    if st.session_state['file_upload_attempts'] >= max_attempts:
        st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
        st.stop()
    st.session_state['file_upload_attempts'] += 1
    
    
    with st.spinner('Wait for it...', show_time=True):
        time.sleep(5)
        model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0")
        labels = ["person", "location", "country", "city", "organization", "time", "date", "product", "event name", "money", "affiliation", "ordinal value", "percent value", "position"]
        entities = model.predict_entities(text, labels)
        df = pd.DataFrame(entities)
            
        properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
        df_styled = df.style.set_properties(**properties)
        st.dataframe(df_styled)
        with st.expander("See Glossary of tags"):
            st.write('''
            '**text**': ['entity extracted from your text data'] 
            
            '**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
            
            '**label**': ['label (tag) assigned to a given extracted entity']
            
            '**start**': ['index of the start of the corresponding entity']
            
            '**end**': ['index of the end of the corresponding entity']
        
    ''')
        if df is not None:
            fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'],
                                 values='score', color='label')
            fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
            st.subheader("Tree map", divider = "red")
            st.plotly_chart(fig)
        if df is not None:
            value_counts1 = df['label'].value_counts()
            df1 = pd.DataFrame(value_counts1)
            final_df = df1.reset_index().rename(columns={"index": "label"})
            col1, col2 = st.columns(2)
            with col1:
                fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
                fig1.update_traces(textposition='inside', textinfo='percent+label')
                st.subheader("Pie Chart", divider = "red")
                st.plotly_chart(fig1)
            with col2:
                fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels')
                st.subheader("Bar Chart", divider = "red")
                st.plotly_chart(fig2)

                

            dfa = pd.DataFrame(
            data={
                'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'],
                'start': ['index of the start of the corresponding entity'],
                'end': ['index of the end of the corresponding entity'],
                })
            buf = io.BytesIO()
            with zipfile.ZipFile(buf, "w") as myzip:
                myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
                myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
                    
            with stylable_container(
                key="download_button",
                css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
            ):
                st.download_button(
                label="Download zip file",
                data=buf.getvalue(),
                file_name="zip file.zip",
                mime="application/zip",
                )
        
        
        
     
                    
st.divider()
st.write(f"Number of times you requested results: {st.session_state['file_upload_attempts']}/{max_attempts}")