Maria Tsilimos
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,27 +6,48 @@ from transformers import pipeline
|
|
6 |
from streamlit_extras.stylable_container import stylable_container
|
7 |
import plotly.express as px
|
8 |
import zipfile
|
9 |
-
|
10 |
from PyPDF2 import PdfReader
|
11 |
import docx
|
12 |
-
|
13 |
-
|
14 |
import os
|
15 |
from comet_ml import Experiment
|
16 |
import re
|
17 |
-
import numpy as np
|
|
|
|
|
18 |
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary")
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
expander.write('''
|
27 |
|
28 |
**Named Entities:**
|
29 |
-
This 58-Italian
|
30 |
|
31 |
("**INDIRIZZO**: Identifica un indirizzo fisico.
|
32 |
|
@@ -142,7 +163,7 @@ expander.write('''
|
|
142 |
|
143 |
**DOSAGGIO**: Quantità di un medicinale da assumere.
|
144 |
|
145 |
-
**FORM**: Forma del medicinale, ad esempio compresse
|
146 |
|
147 |
Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
|
148 |
|
@@ -166,34 +187,15 @@ expander.write('''
|
|
166 |
with st.sidebar:
|
167 |
container = st.container(border=True)
|
168 |
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
|
169 |
-
st.subheader("Related NLP Web Apps", divider
|
170 |
-
st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type
|
171 |
-
|
172 |
-
|
173 |
-
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
174 |
-
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
175 |
-
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
176 |
-
|
177 |
-
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
178 |
-
comet_initialized = True
|
179 |
-
else:
|
180 |
-
comet_initialized = False
|
181 |
-
st.warning("Comet ML not initialized. Check environment variables.")
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
if 'file_upload_attempts' not in st.session_state:
|
186 |
-
st.session_state['file_upload_attempts'] = 0
|
187 |
-
|
188 |
-
max_attempts = 10
|
189 |
-
|
190 |
|
|
|
191 |
upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
|
192 |
text = None
|
193 |
df = None
|
194 |
|
195 |
if upload_file is not None:
|
196 |
-
|
197 |
file_extension = upload_file.name.split('.')[-1].lower()
|
198 |
if file_extension == 'pdf':
|
199 |
try:
|
@@ -201,47 +203,53 @@ if upload_file is not None:
|
|
201 |
text = ""
|
202 |
for page in pdf_reader.pages:
|
203 |
text += page.extract_text()
|
204 |
-
st.write("Due to security protocols, the file content is hidden.")
|
205 |
except Exception as e:
|
206 |
st.error(f"An error occurred while reading PDF: {e}")
|
|
|
207 |
elif file_extension == 'docx':
|
208 |
try:
|
209 |
doc = docx.Document(upload_file)
|
210 |
text = "\n".join([para.text for para in doc.paragraphs])
|
211 |
-
st.write("Due to security protocols, the file content is hidden.")
|
212 |
except Exception as e:
|
213 |
st.error(f"An error occurred while reading docx: {e}")
|
|
|
214 |
else:
|
215 |
st.warning("Unsupported file type.")
|
216 |
-
|
217 |
-
st.stop()
|
218 |
-
|
219 |
|
220 |
st.divider()
|
221 |
|
|
|
222 |
if st.button("Results"):
|
|
|
|
|
|
|
223 |
if st.session_state['file_upload_attempts'] >= max_attempts:
|
224 |
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
225 |
st.stop()
|
226 |
-
st.session_state['file_upload_attempts'] += 1
|
227 |
-
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
text1 = model(text)
|
233 |
-
|
234 |
-
df1 = pd.DataFrame(text1)
|
235 |
-
pattern = r'[^\w\s]'
|
236 |
-
df1['word'] = df1['word'].replace(pattern, '', regex=True)
|
237 |
|
238 |
-
|
239 |
-
df = df2.dropna()
|
240 |
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
243 |
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
if comet_initialized:
|
247 |
experiment = Experiment(
|
@@ -249,12 +257,13 @@ if st.button("Results"):
|
|
249 |
workspace=COMET_WORKSPACE,
|
250 |
project_name=COMET_PROJECT_NAME,
|
251 |
)
|
252 |
-
experiment.log_parameter("
|
253 |
experiment.log_table("predicted_entities", df)
|
254 |
|
|
|
255 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
256 |
df_styled = df.style.set_properties(**properties)
|
257 |
-
st.dataframe(df_styled)
|
258 |
|
259 |
with st.expander("See Glossary of tags"):
|
260 |
st.write('''
|
@@ -269,45 +278,48 @@ if st.button("Results"):
|
|
269 |
'**end**': ['index of the end of the corresponding entity']
|
270 |
''')
|
271 |
|
272 |
-
|
273 |
-
|
|
|
274 |
values='score', color='entity_group')
|
275 |
-
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
if comet_initialized:
|
279 |
-
experiment.log_figure(figure=
|
280 |
-
|
281 |
-
if df is not None:
|
282 |
-
value_counts1 = df['entity_group'].value_counts()
|
283 |
-
df1 = pd.DataFrame(value_counts1)
|
284 |
-
final_df = df1.reset_index().rename(columns={"index": "entity_group"})
|
285 |
-
col1, col2 = st.columns(2)
|
286 |
-
with col1:
|
287 |
-
fig1 = px.pie(final_df, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
288 |
-
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
289 |
-
st.subheader("Pie Chart", divider = "orange")
|
290 |
-
st.plotly_chart(fig1)
|
291 |
-
if comet_initialized:
|
292 |
-
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
|
293 |
-
with col2:
|
294 |
-
fig2 = px.bar(final_df, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
|
295 |
-
st.subheader("Bar Chart", divider = "orange")
|
296 |
-
st.plotly_chart(fig2)
|
297 |
-
if comet_initialized:
|
298 |
-
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
|
299 |
|
|
|
300 |
dfa = pd.DataFrame(
|
301 |
data={
|
302 |
-
'word': ['entity extracted from your text data'],
|
|
|
|
|
303 |
'start': ['index of the start of the corresponding entity'],
|
304 |
'end': ['index of the end of the corresponding entity'],
|
305 |
-
|
|
|
306 |
buf = io.BytesIO()
|
307 |
with zipfile.ZipFile(buf, "w") as myzip:
|
308 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
309 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
310 |
-
|
311 |
|
312 |
with stylable_container(
|
313 |
key="download_button",
|
@@ -316,7 +328,7 @@ if st.button("Results"):
|
|
316 |
st.download_button(
|
317 |
label="Download zip file",
|
318 |
data=buf.getvalue(),
|
319 |
-
file_name="
|
320 |
mime="application/zip",
|
321 |
)
|
322 |
if comet_initialized:
|
@@ -325,4 +337,5 @@ if st.button("Results"):
|
|
325 |
st.divider()
|
326 |
if comet_initialized:
|
327 |
experiment.end()
|
328 |
-
|
|
|
|
6 |
from streamlit_extras.stylable_container import stylable_container
|
7 |
import plotly.express as px
|
8 |
import zipfile
|
|
|
9 |
from PyPDF2 import PdfReader
|
10 |
import docx
|
|
|
|
|
11 |
import os
|
12 |
from comet_ml import Experiment
|
13 |
import re
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
|
17 |
|
18 |
|
19 |
|
20 |
+
# --- Configuration ---
|
21 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
22 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
23 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
24 |
+
|
25 |
+
comet_initialized = False
|
26 |
+
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
27 |
+
comet_initialized = True
|
28 |
+
|
29 |
+
# --- Initialize session state ---
|
30 |
+
if 'file_upload_attempts' not in st.session_state:
|
31 |
+
st.session_state['file_upload_attempts'] = 0
|
32 |
|
33 |
+
max_attempts = 10
|
|
|
34 |
|
35 |
+
# --- Helper function for model loading ---
|
36 |
+
@st.cache_resource
|
37 |
+
def load_ner_model():
|
38 |
+
"""Loads the pre-trained NER model and caches it."""
|
39 |
+
return pipeline("token-classification", model="DeepMount00/Italian_NER_XXL", aggregation_strategy="max")
|
40 |
+
|
41 |
+
# --- UI Elements ---
|
42 |
+
st.subheader("58-Italian Named Entity Recognition Web App", divider="rainbow")
|
43 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
|
44 |
+
|
45 |
+
|
46 |
+
expander = st.expander("**Important notes on the 58-Italian-Named Entity Recognition Web App**")
|
47 |
expander.write('''
|
48 |
|
49 |
**Named Entities:**
|
50 |
+
This 58-Italian-Named Entity Recognition Web App predicts fifty-eight (58) labels
|
51 |
|
52 |
("**INDIRIZZO**: Identifica un indirizzo fisico.
|
53 |
|
|
|
163 |
|
164 |
**DOSAGGIO**: Quantità di un medicinale da assumere.
|
165 |
|
166 |
+
**FORM**: Forma del medicinale, ad esempio compresse").
|
167 |
|
168 |
Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
|
169 |
|
|
|
187 |
with st.sidebar:
|
188 |
container = st.container(border=True)
|
189 |
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
|
190 |
+
st.subheader("Related NLP Web Apps", divider="rainbow")
|
191 |
+
st.link_button("8-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/8-named-entity-recognition-web-app/", type="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
# --- File Upload ---
|
194 |
upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx'])
|
195 |
text = None
|
196 |
df = None
|
197 |
|
198 |
if upload_file is not None:
|
|
|
199 |
file_extension = upload_file.name.split('.')[-1].lower()
|
200 |
if file_extension == 'pdf':
|
201 |
try:
|
|
|
203 |
text = ""
|
204 |
for page in pdf_reader.pages:
|
205 |
text += page.extract_text()
|
206 |
+
st.write("File uploaded successfully. Due to security protocols, the file content is hidden.")
|
207 |
except Exception as e:
|
208 |
st.error(f"An error occurred while reading PDF: {e}")
|
209 |
+
text = None
|
210 |
elif file_extension == 'docx':
|
211 |
try:
|
212 |
doc = docx.Document(upload_file)
|
213 |
text = "\n".join([para.text for para in doc.paragraphs])
|
214 |
+
st.write("File uploaded successfully. Due to security protocols, the file content is hidden.")
|
215 |
except Exception as e:
|
216 |
st.error(f"An error occurred while reading docx: {e}")
|
217 |
+
text = None
|
218 |
else:
|
219 |
st.warning("Unsupported file type.")
|
220 |
+
text = None
|
|
|
|
|
221 |
|
222 |
st.divider()
|
223 |
|
224 |
+
# --- Results Button and Processing Logic ---
|
225 |
if st.button("Results"):
|
226 |
+
if not comet_initialized:
|
227 |
+
st.warning("Comet ML not initialized. Check environment variables if you wish to log data.")
|
228 |
+
|
229 |
if st.session_state['file_upload_attempts'] >= max_attempts:
|
230 |
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.")
|
231 |
st.stop()
|
|
|
|
|
232 |
|
233 |
+
if text is None:
|
234 |
+
st.warning("Please upload a supported file (.pdf or .docx) before requesting results.")
|
235 |
+
st.stop()
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
+
st.session_state['file_upload_attempts'] += 1
|
|
|
238 |
|
239 |
+
with st.spinner("Analyzing text...", show_time=True):
|
240 |
+
# Load model (cached)
|
241 |
+
model = load_ner_model()
|
242 |
+
text_entities = model(text)
|
243 |
+
df = pd.DataFrame(text_entities)
|
244 |
|
245 |
+
# Clean and filter DataFrame
|
246 |
+
pattern = r'[^\w\s]'
|
247 |
+
df['word'] = df['word'].replace(pattern, '', regex=True)
|
248 |
+
df = df.replace('', 'Unknown').dropna()
|
249 |
+
|
250 |
+
if df.empty:
|
251 |
+
st.warning("No entities were extracted from the uploaded text.")
|
252 |
+
st.stop()
|
253 |
|
254 |
if comet_initialized:
|
255 |
experiment = Experiment(
|
|
|
257 |
workspace=COMET_WORKSPACE,
|
258 |
project_name=COMET_PROJECT_NAME,
|
259 |
)
|
260 |
+
experiment.log_parameter("input_text_length", len(text))
|
261 |
experiment.log_table("predicted_entities", df)
|
262 |
|
263 |
+
# --- Display Results ---
|
264 |
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
265 |
df_styled = df.style.set_properties(**properties)
|
266 |
+
st.dataframe(df_styled, use_container_width=True)
|
267 |
|
268 |
with st.expander("See Glossary of tags"):
|
269 |
st.write('''
|
|
|
278 |
'**end**': ['index of the end of the corresponding entity']
|
279 |
''')
|
280 |
|
281 |
+
# --- Visualizations ---
|
282 |
+
st.subheader("Tree map", divider="rainbow")
|
283 |
+
fig_treemap = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'],
|
284 |
values='score', color='entity_group')
|
285 |
+
fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25))
|
286 |
+
st.plotly_chart(fig_treemap)
|
287 |
+
if comet_initialized:
|
288 |
+
experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap")
|
289 |
+
|
290 |
+
value_counts1 = df['entity_group'].value_counts()
|
291 |
+
final_df_counts = value_counts1.reset_index().rename(columns={"index": "entity_group"})
|
292 |
+
|
293 |
+
col1, col2 = st.columns(2)
|
294 |
+
with col1:
|
295 |
+
st.subheader("Pie Chart", divider="rainbow")
|
296 |
+
fig_pie = px.pie(final_df_counts, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
297 |
+
fig_pie.update_traces(textposition='inside', textinfo='percent+label')
|
298 |
+
st.plotly_chart(fig_pie)
|
299 |
+
if comet_initialized:
|
300 |
+
experiment.log_figure(figure=fig_pie, figure_name="label_pie_chart")
|
301 |
+
|
302 |
+
with col2:
|
303 |
+
st.subheader("Bar Chart", divider="rainbow")
|
304 |
+
fig_bar = px.bar(final_df_counts, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
|
305 |
+
st.plotly_chart(fig_bar)
|
306 |
if comet_initialized:
|
307 |
+
experiment.log_figure(figure=fig_bar, figure_name="label_bar_chart")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
# --- Downloadable Content ---
|
310 |
dfa = pd.DataFrame(
|
311 |
data={
|
312 |
+
'word': ['entity extracted from your text data'],
|
313 |
+
'score': ['accuracy score; how accurately a tag has been assigned to a given entity'],
|
314 |
+
'entity_group': ['label (tag) assigned to a given extracted entity'],
|
315 |
'start': ['index of the start of the corresponding entity'],
|
316 |
'end': ['index of the end of the corresponding entity'],
|
317 |
+
})
|
318 |
+
|
319 |
buf = io.BytesIO()
|
320 |
with zipfile.ZipFile(buf, "w") as myzip:
|
321 |
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
322 |
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
|
|
323 |
|
324 |
with stylable_container(
|
325 |
key="download_button",
|
|
|
328 |
st.download_button(
|
329 |
label="Download zip file",
|
330 |
data=buf.getvalue(),
|
331 |
+
file_name="nlpblogs_ner_results.zip",
|
332 |
mime="application/zip",
|
333 |
)
|
334 |
if comet_initialized:
|
|
|
337 |
st.divider()
|
338 |
if comet_initialized:
|
339 |
experiment.end()
|
340 |
+
|
341 |
+
st.write(f"Number of times you requested results: **{st.session_state['file_upload_attempts']}/{max_attempts}**")
|