Maria Tsilimos
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import time
|
3 |
+
import pandas as pd
|
4 |
+
import io
|
5 |
+
from transformers import pipeline
|
6 |
+
from streamlit_extras.stylable_container import stylable_container
|
7 |
+
import plotly.express as px
|
8 |
+
import zipfile
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
from comet_ml import Experiment
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
st.subheader("7-Persian Named Entity Recognition Web App", divider = "red")
|
17 |
+
st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary")
|
18 |
+
|
19 |
+
expander = st.expander("**Important notes on the 7-Persian Named Entity Recognition Web App**")
|
20 |
+
expander.write('''
|
21 |
+
|
22 |
+
**Named Entities:**
|
23 |
+
This 7-Persian Named Entity Recognition Web App predicts seven (7) labels (“person”, “location”, “money”, “organization”, “date”, “percent value”, “time”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags.
|
24 |
+
Please check and adjust the language settings in your computer, so the Persian characters are handled properly in your downloaded file.
|
25 |
+
|
26 |
+
**How to Use:**
|
27 |
+
Type or paste your text and press Ctrl + Enter. Then, click the 'Results' button to extract and tag entities in your text data.
|
28 |
+
|
29 |
+
**Usage Limits:**
|
30 |
+
Unlimited number of Result requests.
|
31 |
+
|
32 |
+
**Customization:**
|
33 |
+
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts.
|
34 |
+
|
35 |
+
**Technical issues:**
|
36 |
+
If your connection times out, please refresh the page or reopen the app's URL.
|
37 |
+
|
38 |
+
For any errors or inquiries, please contact us at [email protected]
|
39 |
+
|
40 |
+
''')
|
41 |
+
|
42 |
+
|
43 |
+
with st.sidebar:
|
44 |
+
container = st.container(border=True)
|
45 |
+
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.")
|
46 |
+
st.subheader("Related NLP Web Apps", divider = "red")
|
47 |
+
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type = "primary")
|
48 |
+
|
49 |
+
|
50 |
+
COMET_API_KEY = os.environ.get("COMET_API_KEY")
|
51 |
+
COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
|
52 |
+
COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
|
53 |
+
|
54 |
+
if COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME:
|
55 |
+
comet_initialized = True
|
56 |
+
else:
|
57 |
+
comet_initialized = False
|
58 |
+
st.warning("Comet ML not initialized. Check environment variables.")
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", key='my_text_area')
|
63 |
+
st.write("**Input text**: ", text)
|
64 |
+
|
65 |
+
def clear_text():
|
66 |
+
st.session_state['my_text_area'] = ""
|
67 |
+
|
68 |
+
st.button("Clear text", on_click=clear_text)
|
69 |
+
|
70 |
+
st.divider()
|
71 |
+
|
72 |
+
if st.button("Results"):
|
73 |
+
with st.spinner("Wait for it...", show_time=True):
|
74 |
+
time.sleep(5)
|
75 |
+
model = pipeline("token-classification", model="HooshvareLab/bert-fa-base-uncased-ner-peyma", aggregation_strategy = "max")
|
76 |
+
text1 = model(text)
|
77 |
+
|
78 |
+
df1 = pd.DataFrame(text1)
|
79 |
+
pattern = r'[^\w\s]'
|
80 |
+
df1['word'] = df1['word'].replace(pattern, '', regex=True)
|
81 |
+
|
82 |
+
df2 = df1.replace('', 'Unknown')
|
83 |
+
df = df2.dropna()
|
84 |
+
|
85 |
+
if comet_initialized:
|
86 |
+
experiment = Experiment(
|
87 |
+
api_key=COMET_API_KEY,
|
88 |
+
workspace=COMET_WORKSPACE,
|
89 |
+
project_name=COMET_PROJECT_NAME,
|
90 |
+
)
|
91 |
+
experiment.log_parameter("input_text", text)
|
92 |
+
experiment.log_table("predicted_entities", df)
|
93 |
+
|
94 |
+
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"}
|
95 |
+
df_styled = df.style.set_properties(**properties)
|
96 |
+
st.dataframe(df_styled)
|
97 |
+
|
98 |
+
with st.expander("See Glossary of tags"):
|
99 |
+
st.write('''
|
100 |
+
'**word**': ['entity extracted from your text data']
|
101 |
+
|
102 |
+
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity']
|
103 |
+
|
104 |
+
'**entity_group**': ['label (tag) assigned to a given extracted entity']
|
105 |
+
|
106 |
+
'**start**': ['index of the start of the corresponding entity']
|
107 |
+
|
108 |
+
'**end**': ['index of the end of the corresponding entity']
|
109 |
+
|
110 |
+
**What does B and I mean in front of each entity_group?**
|
111 |
+
|
112 |
+
Supposing that there are two words (word A, word B).
|
113 |
+
|
114 |
+
**B** indicates that word A is the beginning of an entity_group and **I** indicates that word B is inside that entity_group.
|
115 |
+
|
116 |
+
For example, **Los** is the beginning of the entity_group **Location** and **Angeles** is inside the entity_group **Location**.
|
117 |
+
|
118 |
+
Los (B-LOC) - Beginning of the entity_group **Location**
|
119 |
+
|
120 |
+
Angeles (I-LOC) - Inside the entity_group **Location**
|
121 |
+
|
122 |
+
''')
|
123 |
+
|
124 |
+
if df is not None:
|
125 |
+
fig = px.treemap(df, path=[px.Constant("all"), 'word', 'entity_group'],
|
126 |
+
values='score', color='entity_group')
|
127 |
+
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25))
|
128 |
+
st.subheader("Tree map", divider = "red")
|
129 |
+
st.plotly_chart(fig)
|
130 |
+
if comet_initialized:
|
131 |
+
experiment.log_figure(figure=fig, figure_name="entity_treemap")
|
132 |
+
|
133 |
+
if df is not None:
|
134 |
+
value_counts1 = df['entity_group'].value_counts()
|
135 |
+
df1 = pd.DataFrame(value_counts1)
|
136 |
+
final_df = df1.reset_index().rename(columns={"index": "entity_group"})
|
137 |
+
col1, col2 = st.columns(2)
|
138 |
+
with col1:
|
139 |
+
fig1 = px.pie(final_df, values='count', names='entity_group', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels')
|
140 |
+
fig1.update_traces(textposition='inside', textinfo='percent+label')
|
141 |
+
st.subheader("Pie Chart", divider = "red")
|
142 |
+
st.plotly_chart(fig1)
|
143 |
+
if comet_initialized:
|
144 |
+
experiment.log_figure(figure=fig1, figure_name="label_pie_chart")
|
145 |
+
with col2:
|
146 |
+
fig2 = px.bar(final_df, x="count", y="entity_group", color="entity_group", text_auto=True, title='Occurrences of predicted labels')
|
147 |
+
st.subheader("Bar Chart", divider = "red")
|
148 |
+
st.plotly_chart(fig2)
|
149 |
+
if comet_initialized:
|
150 |
+
experiment.log_figure(figure=fig2, figure_name="label_bar_chart")
|
151 |
+
|
152 |
+
dfa = pd.DataFrame(
|
153 |
+
data={
|
154 |
+
'word': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'entity_group': ['label (tag) assigned to a given extracted entity'],
|
155 |
+
'start': ['index of the start of the corresponding entity'],
|
156 |
+
'end': ['index of the end of the corresponding entity'],
|
157 |
+
})
|
158 |
+
buf = io.BytesIO()
|
159 |
+
with zipfile.ZipFile(buf, "w") as myzip:
|
160 |
+
myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
|
161 |
+
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
|
162 |
+
|
163 |
+
|
164 |
+
with stylable_container(
|
165 |
+
key="download_button",
|
166 |
+
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""",
|
167 |
+
):
|
168 |
+
st.download_button(
|
169 |
+
label="Download zip file",
|
170 |
+
data=buf.getvalue(),
|
171 |
+
file_name="zip file.zip",
|
172 |
+
mime="application/zip",
|
173 |
+
)
|
174 |
+
if comet_initialized:
|
175 |
+
experiment.log_asset(buf.getvalue(), file_name="downloadable_results.zip")
|
176 |
+
|
177 |
+
st.divider()
|
178 |
+
if comet_initialized:
|
179 |
+
experiment.end()
|