|
import streamlit as st |
|
import time |
|
import pandas as pd |
|
import io |
|
from transformers import pipeline |
|
from streamlit_extras.stylable_container import stylable_container |
|
import json |
|
import plotly.express as px |
|
from PyPDF2 import PdfReader |
|
import docx |
|
import zipfile |
|
from gliner import GLiNER |
|
|
|
|
|
|
|
st.subheader("8-Named Entity Recognition Web App", divider = "red") |
|
st.link_button("by nlpblogs", "https://nlpblogs.com", type = "tertiary") |
|
|
|
expander = st.expander("**Important notes on the 8-Named Entity Recognition Web App**") |
|
expander.write(''' |
|
|
|
**Named Entities:** |
|
This 8-Named Entity Recognition Web App predicts eight (8) labels (“person”, “country”, “city”, “organization”, “date”, “money”, “percent value”, “position”). Results are presented in an easy-to-read table, visualized in an interactive tree map, pie chart, and bar chart, and are available for download along with a Glossary of tags. |
|
|
|
**How to Use:** |
|
Upload your .pdf or .docx file. Then, click the 'Results' button to extract and tag entities in your text data. |
|
|
|
**Usage Limits:** |
|
You can request results up to 10 times. |
|
|
|
**Customization:** |
|
To change the app's background color to white or black, click the three-dot menu on the right-hand side of your app, go to Settings and then Choose app theme, colors and fonts. |
|
|
|
**Technical issues:** |
|
If your connection times out, please refresh the page or reopen the app's URL. |
|
|
|
For any errors or inquiries, please contact us at [email protected] |
|
|
|
''') |
|
|
|
|
|
with st.sidebar: |
|
container = st.container(border=True) |
|
container.write("**Named Entity Recognition (NER)** is the task of extracting and tagging entities in text data. Entities can be persons, organizations, locations, countries, products, events etc.") |
|
|
|
|
|
|
|
|
|
|
|
st.subheader("Related NLP Web Apps", divider = "red") |
|
st.link_button("14-Named Entity Recognition Web App", "https://nlpblogs.com/shop/named-entity-recognition-ner/14-named-entity-recognition-web-app/", type = "primary") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if 'file_upload_attempts' not in st.session_state: |
|
st.session_state['file_upload_attempts'] = 0 |
|
|
|
max_attempts = 10 |
|
|
|
|
|
upload_file = st.file_uploader("Upload your file. Accepted file formats include: .pdf, .docx", type=['pdf', 'docx']) |
|
text = None |
|
df = None |
|
|
|
if upload_file is not None: |
|
|
|
file_extension = upload_file.name.split('.')[-1].lower() |
|
if file_extension == 'pdf': |
|
try: |
|
pdf_reader = PdfReader(upload_file) |
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
st.write("Due to security protocols, the file content is hidden.") |
|
except Exception as e: |
|
st.error(f"An error occurred while reading PDF: {e}") |
|
elif file_extension == 'docx': |
|
try: |
|
doc = docx.Document(upload_file) |
|
text = "\n".join([para.text for para in doc.paragraphs]) |
|
st.write("Due to security protocols, the file content is hidden.") |
|
except Exception as e: |
|
st.error(f"An error occurred while reading docx: {e}") |
|
else: |
|
st.warning("Unsupported file type.") |
|
|
|
st.stop() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if st.button("Results"): |
|
if st.session_state['file_upload_attempts'] >= max_attempts: |
|
st.error(f"You have requested results {max_attempts} times. You have reached your daily request limit.") |
|
st.stop() |
|
st.session_state['file_upload_attempts'] += 1 |
|
|
|
|
|
with st.spinner('Wait for it...', show_time=True): |
|
time.sleep(5) |
|
model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0") |
|
labels = ["person", "country", "city", "organization", "date", "money", "percent value", "position"] |
|
entities = model.predict_entities(text, labels) |
|
df = pd.DataFrame(entities) |
|
|
|
properties = {"border": "2px solid gray", "color": "blue", "font-size": "16px"} |
|
df_styled = df.style.set_properties(**properties) |
|
st.dataframe(df_styled) |
|
with st.expander("See Glossary of tags"): |
|
st.write(''' |
|
'**text**': ['entity extracted from your text data'] |
|
|
|
'**score**': ['accuracy score; how accurately a tag has been assigned to a given entity'] |
|
|
|
'**label**': ['label (tag) assigned to a given extracted entity'] |
|
|
|
'**start**': ['index of the start of the corresponding entity'] |
|
|
|
'**end**': ['index of the end of the corresponding entity'] |
|
|
|
''') |
|
if df is not None: |
|
fig = px.treemap(df, path=[px.Constant("all"), 'text', 'label'], |
|
values='score', color='label') |
|
fig.update_layout(margin = dict(t=50, l=25, r=25, b=25)) |
|
st.subheader("Tree map", divider = "red") |
|
st.plotly_chart(fig) |
|
if df is not None: |
|
value_counts1 = df['label'].value_counts() |
|
df1 = pd.DataFrame(value_counts1) |
|
final_df = df1.reset_index().rename(columns={"index": "label"}) |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
fig1 = px.pie(final_df, values='count', names='label', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted labels') |
|
fig1.update_traces(textposition='inside', textinfo='percent+label') |
|
st.subheader("Pie Chart", divider = "red") |
|
st.plotly_chart(fig1) |
|
with col2: |
|
fig2 = px.bar(final_df, x="count", y="label", color="label", text_auto=True, title='Occurrences of predicted labels') |
|
st.subheader("Bar Chart", divider = "red") |
|
st.plotly_chart(fig2) |
|
|
|
|
|
|
|
dfa = pd.DataFrame( |
|
data={ |
|
'text': ['entity extracted from your text data'], 'score': ['accuracy score; how accurately a tag has been assigned to a given entity'], 'label': ['label (tag) assigned to a given extracted entity'], |
|
'start': ['index of the start of the corresponding entity'], |
|
'end': ['index of the end of the corresponding entity'], |
|
}) |
|
buf = io.BytesIO() |
|
with zipfile.ZipFile(buf, "w") as myzip: |
|
myzip.writestr("Summary of the results.csv", df.to_csv(index=False)) |
|
myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False)) |
|
|
|
with stylable_container( |
|
key="download_button", |
|
css_styles="""button { background-color: yellow; border: 1px solid black; padding: 5px; color: black; }""", |
|
): |
|
st.download_button( |
|
label="Download zip file", |
|
data=buf.getvalue(), |
|
file_name="zip file.zip", |
|
mime="application/zip", |
|
) |
|
|
|
|
|
|
|
|
|
|
|
st.divider() |
|
st.write(f"Number of times you requested results: {st.session_state['file_upload_attempts']}/{max_attempts}") |
|
|